ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimality conditions for the buckling of a clamped plate

163   0   0.0 ( 0 )
 نشر من قبل Alfred Wagner
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the following uniqueness result for the buckling plate. Assume there exists a smooth domain which minimizes the first buckling eigenvalue for a plate among all smooth domains of given volume. Then the domain must be a ball. The proof uses the second variation for the buckling eigenvalue and an inequality by L. E. Payne to establish this result.



قيم البحث

اقرأ أيضاً

116 - Yu-HOng Dai , Liwei Zhang 2020
Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, num erical partial differential equations and optimality conditions of equality constrained optimization. For the unconstrained continuous nonconvex-nonconcave situation, Jin, Netrapalli and Jordan (2019) carefully considered the very basic question: what is a proper definition of local optima of a minimax optimization problem, and proposed a proper definition of local optimality called local minimax. We shall extend the definition of local minimax point to constrained nonconvex-nonconcave minimax optimization problems. By analyzing Jacobian uniqueness conditions for the lower-level maximization problem and the strong regularity of Karush-Kuhn-Tucker conditions of the maximization problem, we provide both necessary optimality conditions and sufficient optimality conditions for the local minimax points of constrained minimax optimization problems.
Hidden convex optimization is such a class of nonconvex optimization problems that can be globally solved in polynomial time via equivalent convex programming reformulations. In this paper, we focus on checking local optimality in hidden convex optim ization. We first introduce a class of hidden convex optimization problems by jointing the classical nonconvex trust-region subproblem (TRS) with convex optimization (CO), and then present a comprehensive study on local optimality conditions. In order to guarantee the existence of a necessary and sufficient condition for local optimality, we need more restrictive assumptions. To our surprise, while (TRS) has at most one local non-global minimizer and (CO) has no local non-global minimizer, their joint problem could have more than one local non-global minimizer.
135 - Kuang Bai , Jane Ye 2020
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it result s in a nonsmooth optimization problem which never satisfies the usual constraint qualification such as the Mangasarian-Fromovitz constraint qualification (MFCQ). In this paper we show that even the first order sufficient condition for metric subregularity (which is in general weaker than MFCQ) fails at each feasible point of the bilevel program. We introduce the concept of directional calmness condition and show that under {the} directional calmness condition, the directional necessary optimality condition holds. {While the directional optimality condition is in general sharper than the non-directional one,} the directional calmness condition is in general weaker than the classical calmness condition and hence is more likely to hold. {We perform the directional sensitivity analysis of the value function and} propose the directional quasi-normality as a sufficient condition for the directional calmness. An example is given to show that the directional quasi-normality condition may hold for the bilevel program.
93 - Lei Guo , Jane Ye 2016
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be seen as a dynamic mathematical program with equilibrium constraints. It provides a powerful modeling paradigm for many practical problems such as bilevel optimal control problems and dynamic principal-agent problems. In this paper, we propose weak, Clarke, Mordukhovich and strong stationarities for the OCPEC. Moreover, we give some sufficient conditions to ensure that the local minimizers of the OCPEC are Fritz John type weakly stationary, Mordukhovich stationary and strongly stationary, respectively. Unlike Pontryagains maximum principle for the classical optimal control problem with equality and inequality constraints, a counter example shows that for general OCPECs, there may exist two sets of multipliers for the complementarity constraints. A condition under which these two sets of multipliers coincide is given.
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f or compactly supported probability measures, and investigate the intrinsic linearised Cauchy problems associated to non-local continuity equations. In particular, we show that when the velocity perturbations belong to the tangent cone to the convexification of the set of admissible velocities, the solutions of these linearised problems are tangent to the solution set of the corresponding continuity inclusion. We then make use of these novel concepts to provide a synthetic and geometric proof of the celebrated Pontryagin Maximum Principle for an optimal control problem with inequality final-point constraints. In addition, we propose sufficient conditions ensuring the normality of the maximum principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا