ﻻ يوجد ملخص باللغة العربية
We consider the classic problem of scheduling jobs with precedence constraints on identical machines to minimize makespan, in the presence of communication delays. In this setting, denoted by $mathsf{P} mid mathsf{prec}, c mid C_{mathsf{max}}$, if two dependent jobs are scheduled on different machines, then at least $c$ units of time must pass between their executions. Despite its relevance to many applications, this model remains one of the most poorly understood in scheduling theory. Even for a special case where an unlimited number of machines is available, the best known approximation ratio is $2/3 cdot (c+1)$, whereas Grahams greedy list scheduling algorithm already gives a $(c+1)$-approximation in that setting. An outstanding open problem in the top-10 list by Schuurman and Woeginger and its recent update by Bansal asks whether there exists a constant-factor approximation algorithm. In this work we give a polynomial-time $O(log c cdot log m)$-approximation algorithm for this problem, where $m$ is the number of machines and $c$ is the communication delay. Our approach is based on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering of the semimetric space induced by this lift.
In the scheduling with non-uniform communication delay problem, the input is a set of jobs with precedence constraints. Associated with every precedence constraint between a pair of jobs is a communication delay, the time duration the scheduler has t
In this paper, we study the lower- and upper-bounded covering (LUC) problem, where we are given a set $P$ of $n$ points, a collection $mathcal{B}$ of balls, and parameters $L$ and $U$. The goal is to find a minimum-sized subset $mathcal{B}subseteq ma
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. In this setting, if two precedence-constrained jobs $u$ and $v$, with ($u prec v$), ar
We show a new way to round vector solutions of semidefinite programming (SDP) hierarchies into integral solutions, based on a connection between these hierarchies and the spectrum of the input graph. We demonstrate the utility of our method by provid
Recently, Hierarchical Clustering (HC) has been considered through the lens of optimization. In particular, two maximization objectives have been defined. Moseley and Wang defined the emph{Revenue} objective to handle similarity information given by