ﻻ يوجد ملخص باللغة العربية
We show a new way to round vector solutions of semidefinite programming (SDP) hierarchies into integral solutions, based on a connection between these hierarchies and the spectrum of the input graph. We demonstrate the utility of our method by providing a new SDP-hierarchy based algorithm for constraint satisfaction problems with 2-variable constraints (2-CSPs). More concretely, we show for every 2-CSP instance I a rounding algorithm for r rounds of the Lasserre SDP hierarchy for I that obtains an integral solution that is at most eps worse than the relaxations value (normalized to lie in [0,1]), as long as r > kcdotrank_{geq theta}(Ins)/poly(e) ;, where k is the alphabet size of I, $theta=poly(e/k)$, and $rank_{geq theta}(Ins)$ denotes the number of eigenvalues larger than $theta$ in the normalized adjacency matrix of the constraint graph of $Ins$. In the case that $Ins$ is a uniquegames instance, the threshold $theta$ is only a polynomial in $e$, and is independent of the alphabet size. Also in this case, we can give a non-trivial bound on the number of rounds for emph{every} instance. In particular our result yields an SDP-hierarchy based algorithm that matches the performance of the recent subexponential algorithm of Arora, Barak and Steurer (FOCS 2010) in the worst case, but runs faster on a natural family of instances, thus further restricting the set of possible hard instances for Khots Unique Games Conjecture. Our algorithm actually requires less than the $n^{O(r)}$ constraints specified by the $r^{th}$ level of the Lasserre hierarchy, and in some cases $r$ rounds of our program can be evaluated in time $2^{O(r)}poly(n)$.
Maximum A posteriori Probability (MAP) inference in graphical models amounts to solving a graph-structured combinatorial optimization problem. Popular inference algorithms such as belief propagation (BP) and generalized belief propagation (GBP) are i
Neural networks (NNs) have been extremely successful across many tasks in machine learning. Quantization of NN weights has become an important topic due to its impact on their energy efficiency, inference time and deployment on hardware. Although pos
Under the Strong Exponential Time Hypothesis, an integer linear program with $n$ Boolean-valued variables and $m$ equations cannot be solved in $c^n$ time for any constant $c < 2$. If the domain of the variables is relaxed to $[0,1]$, the associated
The tendency of semidefinite programs to compose perfectly under product has been exploited many times in complexity theory: for example, by Lovasz to determine the Shannon capacity of the pentagon; to show a direct sum theorem for non-deterministic
We propose a new hierarchy of semidefinite programming relaxations for inference problems. As test cases, we consider the problem of community detection in block models. The vertices are partitioned into $k$ communities, and a graph is sampled condit