ﻻ يوجد ملخص باللغة العربية
We propose a simple SIR model in order to investigate the impact of various confinement strategies on a most virulent epidemic. Our approach is motivated by the current COVID-19 pandemic. The main hypothesis is the existence of two populations of susceptible persons, one which obeys confinement and for which the infection rate does not exceed 1, and a population which, being non confined for various imperatives, can be substantially more infective. The model, initially formulated as a differential system, is discretised following a specific procedure, the discrete system serving as an integrator for the differential one. Our model is calibrated so as to correspond to what is observed in the COVID-19 epidemic. Several conclusions can be reached, despite the very simple structure of our model. First, it is not possible to pinpoint the genesis of the epidemic by just analysing data from when the epidemic is in full swing. It may well turn out that the epidemic has reached a sizeable part of the world months before it became noticeable. Concerning the confinement scenarios, a universal feature of all our simulations is that relaxing the lockdown constraints leads to a rekindling of the epidemic. Thus we sought the conditions for the second epidemic peak to be lower than the first one. This is possible in all the scenarios considered (abrupt, progressive or stepwise exit) but typically a progressive exit can start earlier than an abrupt one. However, by the time the progressive exit is complete, the overall confinement times are not too different. From our results, the most promising strategy is that of a stepwise exit. And in fact its implementation could be quite feasible, with the major part of the population (minus the fragile groups) exiting simultaneously but obeying rigorous distancing constraints.
We present a series of SIR-network models, extended with a game-theoretic treatment of imitation dynamics which result from regular population mobility across residential and work areas and the ensuing interactions. Each considered SIR-network model
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i
We present a compartmental meta-population model for the spread of Covid-19 in India. Our model simulates populations at a district or state level using an epidemiological model that is appropriate to Covid-19. Different districts are connected by a
The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola v