ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Big Data Analytics in Healthcare Enhancement: Trends, Challenges and Opportunities

362   0   0.0 ( 0 )
 نشر من قبل Imran Razzak Dr
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Clinicians decisions are becoming more and more evidence-based meaning in no other field the big data analytics so promising as in healthcare. Due to the sheer size and availability of healthcare data, big data analytics has revolutionized this industry and promises us a world of opportunities. It promises us the power of early detection, prediction, prevention and helps us to improve the quality of life. Researchers and clinicians are working to inhibit big data from having a positive impact on health in the future. Different tools and techniques are being used to analyze, process, accumulate, assimilate and manage large amount of healthcare data either in structured or unstructured form. In this paper, we would like to address the need of big data analytics in healthcare: why and how can it help to improve life?. We present the emerging landscape of big data and analytical techniques in the five sub-disciplines of healthcare i.e.medical image analysis and imaging informatics, bioinformatics, clinical informatics, public health informatics and medical signal analytics. We presents different architectures, advantages and repositories of each discipline that draws an integrated depiction of how distinct healthcare activities are accomplished in the pipeline to facilitate individual patients from multiple perspectives. Finally the paper ends with the notable applications and challenges in adoption of big data analytics in healthcare.


قيم البحث

اقرأ أيضاً

The health and various ways to improve healthcare systems are one of the most concerns of human in history. By the growth of mobile technology, different mobile applications in the field of the healthcare system are developed. These mobile applicatio ns instantly gather and analyze the data of their users to help them in the health area. This volume of data will be a critical problem. Big data in healthcare mobile applications have its challenges and opportunities for the users and developers. Does this amount of gathered data which is increasing day by day can help the human to design new tools in healthcare systems and improve health condition? In this chapter, we will discuss meticulously the challenges and opportunities of big data in the healthcare mobile applications.
This paper embodies the usage of Big Data in Healthcare. It is important to note that big data in terms of Architecture and implementation might be or has already or will continue to assist the continuous growth in the field of healthcare. The main i mportant aspects of this study are the general importance of big data in healthcare, the positives big data will help tackle and enhance in this field and not to also forget to mention the tremendous downside big data has on healthcare that is still needed to improve or putting extensive research on. We believe there is still a long way in which institutions and individuals understand the hidden truth about big data. We have highlighted the various ways one could be confidently relied on big data and on the other hand highlighted the weighted importance of big problem big data and expected solutions.
While manufacturers have been generating highly distributed data from various systems, devices and applications, a number of challenges in both data management and data analysis require new approaches to support the big data era. These challenges for industrial big data analytics is real-time analysis and decision-making from massive heterogeneous data sources in manufacturing space. This survey presents new concepts, methodologies, and applications scenarios of industrial big data analytics, which can provide dramatic improvements in velocity and veracity problem solving. We focus on five important methodologies of industrial big data analytics: 1) Highly distributed industrial data ingestion: access and integrate to highly distributed data sources from various systems, devices and applications; 2) Industrial big data repository: cope with sampling biases and heterogeneity, and store different data formats and structures; 3) Large-scale industrial data management: organizes massive heterogeneous data and share large-scale data; 4) Industrial data analytics: track data provenance, from data generation through data preparation; 5) Industrial data governance: ensures data trust, integrity and security. For each phase, we introduce to current research in industries and academia, and discusses challenges and potential solutions. We also examine the typical applications of industrial big data, including smart factory visibility, machine fleet, energy management, proactive maintenance, and just in time supply chain. These discussions aim to understand the value of industrial big data. Lastly, this survey is concluded with a discussion of open problems and future directions.
215 - Jundong Li , Huan Liu 2016
We are surrounded by huge amounts of large-scale high dimensional data. It is desirable to reduce the dimensionality of data for many learning tasks due to the curse of dimensionality. Feature selection has shown its effectiveness in many application s by building simpler and more comprehensive model, improving learning performance, and preparing clean, understandable data. Recently, some unique characteristics of big data such as data velocity and data variety present challenges to the feature selection problem. In this paper, we envision these challenges of feature selection for big data analytics. In particular, we first give a brief introduction about feature selection and then detail the challenges of feature selection for structured, heterogeneous and streaming data as well as its scalability and stability issues. At last, to facilitate and promote the feature selection research, we present an open-source feature selection repository (scikit-feature), which consists of most of current popular feature selection algorithms.
Future wireless networks are expected to evolve towards an intelligent and software reconfigurable paradigm enabling ubiquitous communications between humans and mobile devices. They will be also capable of sensing, controlling, and optimizing the wi reless environment to fulfill the visions of low-power, high-throughput, massively-connected, and low-latency communications. A key conceptual enabler that is recently gaining increasing popularity is the Holographic Multiple Input Multiple Output Surface (HMIMOS) that refers to a low-cost transformative wireless planar structure comprising of sub-wavelength metallic or dielectric scattering particles, which is capable of impacting electromagnetic waves according to desired objectives. In this article, we provide an overview of HMIMOS communications by introducing the available hardware architectures for reconfigurable such metasurfaces and their main characteristics, as well as highlighting the opportunities and key challenges in designing HMIMOS-enabled communications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا