ترغب بنشر مسار تعليمي؟ اضغط هنا

Exclusive Hierarchical Decoding for Deep Keyphrase Generation

145   0   0.0 ( 0 )
 نشر من قبل Wang Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases. A new setting is recently introduced into this problem, in which, given a document, the model needs to predict a set of keyphrases and simultaneously determine the appropriate number of keyphrases to produce. Previous work in this setting employs a sequential decoding process to generate keyphrases. However, such a decoding method ignores the intrinsic hierarchical compositionality existing in the keyphrase set of a document. Moreover, previous work tends to generate duplicated keyphrases, which wastes time and computing resources. To overcome these limitations, we propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism. The hierarchical decoding process is to explicitly model the hierarchical compositionality of a keyphrase set. Both the soft and the hard exclusion mechanisms keep track of previously-predicted keyphrases within a window size to enhance the diversity of the generated keyphrases. Extensive experiments on multiple KG benchmark datasets demonstrate the effectiveness of our method to generate less duplicated and more accurate keyphrases.



قيم البحث

اقرأ أيضاً

Keyphrase generation aims to summarize long documents with a collection of salient phrases. Deep neural models have demonstrated a remarkable success in this task, capable of predicting keyphrases that are even absent from a document. However, such a bstractiveness is acquired at the expense of a substantial amount of annotated data. In this paper, we present a novel method for keyphrase generation, AutoKeyGen, without the supervision of any human annotation. Motivated by the observation that an absent keyphrase in one document can appear in other places, in whole or in part, we first construct a phrase bank by pooling all phrases in a corpus. With this phrase bank, we then draw candidate absent keyphrases for each document through a partial matching process. To rank both types of candidates, we combine their lexical- and semantic-level similarities to the input document. Moreover, we utilize these top-ranked candidates as to train a deep generative model for more absent keyphrases. Extensive experiments demonstrate that AutoKeyGen outperforms all unsupervised baselines and can even beat strong supervised methods in certain cases.
The encoder-decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source docum ent can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relationships of different granularities between the source document and its references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both the source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.
Keyphrase Generation (KG) is the task of generating central topics from a given document or literary work, which captures the crucial information necessary to understand the content. Documents such as scientific literature contain rich meta-sentence information, which represents the logical-semantic structure of the documents. However, previous approaches ignore the constraints of document logical structure, and hence they mistakenly generate keyphrases from unimportant sentences. To address this problem, we propose a new method called Sentence Selective Network (SenSeNet) to incorporate the meta-sentence inductive bias into KG. In SenSeNet, we use a straight-through estimator for end-to-end training and incorporate weak supervision in the training of the sentence selection module. Experimental results show that SenSeNet can consistently improve the performance of major KG models based on seq2seq framework, which demonstrate the effectiveness of capturing structural information and distinguishing the significance of sentences in KG task.
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text, and absent keyphrase which does not match any contiguous subsequence but is hig hly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrase generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.
Understanding speakers feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response g eneration. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا