ﻻ يوجد ملخص باللغة العربية
Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, Extended Transformer Construction (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a Contrastive Predictive Coding (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.
We show that viewing graphs as sets of node features and incorporating structural and positional information into a transformer architecture is able to outperform representations learned with classical graph neural networks (GNNs). Our model, GraphiT
The recently-proposed Perceiver model obtains good results on several domains (images, audio, multimodal, point clouds) while scaling linearly in compute and memory with the input size. While the Perceiver supports many kinds of inputs, it can only p
Tree-based ensemble methods, as Random Forests and Gradient Boosted Trees, have been successfully used for regression in many applications and research studies. Furthermore, these methods have been extended in order to deal with uncertainty in the ou
When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays
Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [Dasgupta et al., 2018] is able to efficiently summarize the data with a single pass and has been used for novelty detection. We propose a new classifier (for binary and multi-class cl