ﻻ يوجد ملخص باللغة العربية
We address the problem of soft color segmentation, defined as decomposing a given image into several RGBA layers, each containing only homogeneous color regions. The resulting layers from decomposition pave the way for applications that benefit from layer-based editing, such as recoloring and compositing of images and videos. The current state-of-the-art approach for this problem is hindered by slow processing time due to its iterative nature, and consequently does not scale to certain real-world scenarios. To address this issue, we propose a neural network based method for this task that decomposes a given image into multiple layers in a single forward pass. Furthermore, our method separately decomposes the color layers and the alpha channel layers. By leveraging a novel training objective, our method achieves proper assignment of colors amongst layers. As a consequence, our method achieve promising quality without existing issue of inference speed for iterative approaches. Our thorough experimental analysis shows that our method produces qualitative and quantitative results comparable to previous methods while achieving a 300,000x speed improvement. Finally, we utilize our proposed method on several applications, and demonstrate its speed advantage, especially in video editing.
We present TDNet, a temporally distributed network designed for fast and accurate video semantic segmentation. We observe that features extracted from a certain high-level layer of a deep CNN can be approximated by composing features extracted from s
We introduce FIFA, a fast approximate inference method for action segmentation and alignment. Unlike previous approaches, FIFA does not rely on expensive dynamic programming for inference. Instead, it uses an approximate differentiable energy functio
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images. However, applying the same methods on 3D data still poses challenges due to the heavy memory requirements and the lack of stru
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that li
We present Fast Fourier Color Constancy (FFCC), a color constancy algorithm which solves illuminant estimation by reducing it to a spatial localization task on a torus. By operating in the frequency domain, FFCC produces lower error rates than the pr