ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiclassical transport equations of Dirac particles in rotating frames

68   0   0.0 ( 0 )
 نشر من قبل Omer Faruk Dayi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish covariant semiclassical transport equations of massive spin-1/2 particles which are generated by the quantum kinetic equation modified by enthalpy current dependent terms. The purpose of modification is to take into account the noninertial properties due to the angular velocity of rotating frame which is equivalent to the fluid vorticity in hydrodynamical approach. We present the equations satisfied by the Wigner function components and by studying their solution in the semiclassical approximation we accomplish the transport equations. To acquire a three-dimensional kinetic theory, the relativistic kinetic equations in the comoving frame are integrated over the zeroth component of four-momentum. The resulting vector and axial-vector currents are calculated at zero temperature. There exists another three-dimensional formulation of Dirac particles which correctly addresses the noninertial features of rotating coordinates. We review it briefly and obtain the mass corrections to the chiral vector and axial-vector currents produced by this formulation.

قيم البحث

اقرأ أيضاً

120 - O.F. Dayi , E. Kilincarslan 2019
Semiclassical chiral kinetic theories in the presence of electromagnetic fields as well as vorticity can be constructed by means of some different relativistic or nonrelativistic approaches. To cover the noninertial features of rotating frames one ca n start from the modified quantum kinetic equation of Wigner function in Minkowski spacetime. It provides a relativistic chiral transport equation whose nonrelativistic limit yields a consistent three-dimensional kinetic theory which does not depend explicitly on spatial coordinates. Recently a chiral transport equation in curved spacetime has been proposed and its nonrelativistic limit in rotating coordinates was considered in the absence of electromagnetic fields. We show that the modified theory can be extended to curved spacetime. The related particle current density and chiral transport equation for an inertial observer in the rotating frame are derived. A novel three-dimensional chiral kinetic transport equation is established by inspecting the nonrelativistic limit of the curved spacetime approach in the rotating frame for a comoving observer in the presence of electromagnetic fields. It explicitly depends on spatial coordinates. We prove that it is consistent with the chiral anomaly, chiral magnetic and vortical effects.
The semiclassical kinetic theory of Dirac particles in the presence of external electromagnetic fields and global rotation is established. To provide the Hamiltonian formulation of Dirac particles a symplectic two-form which is a matrix in spin indic es is proposed. The particle number and current densities for the Dirac particles are acquired in the helicity basis. Following a similar procedure, semiclassical kinetic theory of the Weyl particles is accomplished. It is shown that the phase-space dynamics of the Weyl and Dirac particles is directly linked. The anomalous chiral effects due to the external electromagnetic fields and angular velocity of the frame are calculated.
382 - O.F. Dayi , E. Kilincarslan 2015
Kinetic theory of Dirac fermions is studied within the matrix valued differential forms method. It is based on the symplectic form derived by employing the semiclassical wave packet build of the positive energy solutions of the Dirac equation. A sati sfactory definition of the distribution matrix elements imposes to work in the basis where the helicity is diagonal which is also needed to attain the massless limit. We show that the kinematic Thomas precession correction can be studied straightforwardly within this approach. It contributes on an equal footing with the Berry gauge fields. In fact in equations of motion it eliminates the terms arising from the Berry gauge fields.
We investigate the radiative processes of accelerated entangled two-level systems. Using first-order perturbation theory, we evaluate transition rates of two entangled Unruh-DeWitt detectors rotating with the same angular velocity interacting with a massive scalar field. Decay processes for arbitrary radius, angular velocities, and energy gaps are analyzed. We discuss the mean-life of entangled states and entanglement harvesting and degradation.
Hawking radiation from black holes has been studied as a phenomenon of quantum tunneling of particles through their horizons. We have extended this approach to study the tunneling of Dirac particles from a large class of black holes which includes th ose with acceleration and rotation as well. We have calculated the tunneling probability of incoming and outgoing particles, and recovered the correct Hawking temperature by this method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا