ﻻ يوجد ملخص باللغة العربية
The semiclassical kinetic theory of Dirac particles in the presence of external electromagnetic fields and global rotation is established. To provide the Hamiltonian formulation of Dirac particles a symplectic two-form which is a matrix in spin indices is proposed. The particle number and current densities for the Dirac particles are acquired in the helicity basis. Following a similar procedure, semiclassical kinetic theory of the Weyl particles is accomplished. It is shown that the phase-space dynamics of the Weyl and Dirac particles is directly linked. The anomalous chiral effects due to the external electromagnetic fields and angular velocity of the frame are calculated.
Kinetic theory of Dirac fermions is studied within the matrix valued differential forms method. It is based on the symplectic form derived by employing the semiclassical wave packet build of the positive energy solutions of the Dirac equation. A sati
The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to li
We establish covariant semiclassical transport equations of massive spin-1/2 particles which are generated by the quantum kinetic equation modified by enthalpy current dependent terms. The purpose of modification is to take into account the noninerti
Hawking radiation from black holes has been studied as a phenomenon of quantum tunneling of particles through their horizons. We have extended this approach to study the tunneling of Dirac particles from a large class of black holes which includes th
The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric f