ﻻ يوجد ملخص باللغة العربية
Sparse array arrangement has been widely used in vector-sensor arrays because of increased degree-of-freedoms for identifying more sources than sensors. For large-size sparse vector-sensor arrays, one-bit measurements can further reduce the receiver system complexity by using low-resolution ADCs. In this paper, we present a sparse cross-dipole array with one-bit measurements to estimate Direction of Arrivals (DOA) of electromagnetic sources. Based on the independence assumption of sources, we establish the relation between the covariance matrix of one-bit measurements and that of unquantized measurements by Bussgang Theorem. Then we develop a Spatial-Smooth MUSIC (SS-MUSIC) based method, One-Bit MUSIC (OB-MUSIC), to estimate the DOAs. By jointly utilizing the covariance matrices of two dipole arrays, we find that OB-MUSIC is robust against polarization states. We also derive the Cramer-Rao bound (CRB) of DOA estimation for the proposed scheme. Furthermore, we theoretically analyze the applicability of the independence assumption of sources, which is the fundamental of the proposed and other typical methods, and verify the assumption in typical communication applications. Numerical results show that, with the same number of sensors, one-bit sparse cross-dipole arrays have comparable performance with unquantized uniform linear arrays and thus provide a compromise between the DOA estimation performance and the system complexity.
This paper presents a sparse denoising autoencoder (SDAE)-based deep neural network (DNN) for the direction finding (DF) of small unmanned aerial vehicles (UAVs). It is motivated by the practical challenges associated with classical DF algorithms suc
MIMO transmit arrays allow for flexible design of the transmit beampattern. However, the large number of elements required to achieve certain performance using uniform linear arrays (ULA) maybe be too costly. This motivated the need for thinned array
We consider the problem of range-Doppler imaging using one-bit automotive LFMCW1 or PMCW radar that utilizes one-bit ADC sampling with time-varying thresholds at the receiver. The one-bit sampling technique can significantly reduce the cost as well a
One of the main drawbacks of the well-known Direct Position Determination (DPD) method is the requirement that raw signal data be transferred to a common processor. It would therefore be of high practical value if DPD$-$or a modified version thereof$
This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that,