ترغب بنشر مسار تعليمي؟ اضغط هنا

An Application of Deep Reinforcement Learning to Algorithmic Trading

70   0   0.0 ( 0 )
 نشر من قبل Thibaut Theate
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem of determining the optimal trading position at any point in time during a trading activity in stock markets. It proposes a novel DRL trading strategy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this new trading strategy is inspired from the popular DQN algorithm and significantly adapted to the specific algorithmic trading problem at hand. The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data. In order to objectively assess the performance of trading strategies, the research paper also proposes a novel, more rigorous performance assessment methodology. Following this new performance assessment approach, promising results are reported for the TDQN strategy.



قيم البحث

اقرأ أيضاً

As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to trade, at what p rice, and what quantity involves error-prone and arduous development and debugging. In this paper, we introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Along with easily-reproducible tutorials, FinRL library allows users to streamline their own developments and to compare with existing schemes easily. Within FinRL, virtual environments are configured with stock market datasets, trading agents are trained with neural networks, and extensive backtesting is analyzed via trading performance. Moreover, it incorporates important trading constraints such as transaction cost, market liquidity and the investors degree of risk-aversion. FinRL is featured with completeness, hands-on tutorial and reproducibility that favors beginners: (i) at multiple levels of time granularity, FinRL simulates trading environments across various stock markets, including NASDAQ-100, DJIA, S&P 500, HSI, SSE 50, and CSI 300; (ii) organized in a layered architecture with modular structure, FinRL provides fine-tuned state-of-the-art DRL algorithms (DQN, DDPG, PPO, SAC, A2C, TD3, etc.), commonly-used reward functions and standard evaluation baselines to alleviate the debugging workloads and promote the reproducibility, and (iii) being highly extendable, FinRL reserves a complete set of user-import interfaces. Furthermore, we incorporated three application demonstrations, namely single stock trading, multiple stock trading, and portfolio allocation. The FinRL library will be available on Github at link https://github.com/AI4Finance-LLC/FinRL-Library.
143 - Lin Li 2021
Financial trading aims to build profitable strategies to make wise investment decisions in the financial market. It has attracted interests in the machine learning community for a long time. This paper proposes to trade financial assets automatically using feature preprocessing skills and Recurrent Reinforcement Learning (RRL) algorithm. The strategy starts from technical indicators extracted from assets market information. Then these technical indicators are preprocessed by Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT) and eventually inputted to the RRL algorithm to do the trading. The extensive empirical evidence shows that the proposed strategy is not only effective and robust in its performance, but also can mitigate the drawbacks underlying the initial trading using RRL.
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep R L opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.
The unpredictability and volatility of the stock market render it challenging to make a substantial profit using any generalized scheme. This paper intends to discuss our machine learning model, which can make a significant amount of profit in the US stock market by performing live trading in the Quantopian platform while using resources free of cost. Our top approach was to use ensemble learning with four classifiers: Gaussian Naive Bayes, Decision Tree, Logistic Regression with L1 regularization and Stochastic Gradient Descent, to decide whether to go long or short on a particular stock. Our best model performed daily trade between July 2011 and January 2019, generating 54.35% profit. Finally, our work showcased that mixtures of weighted classifiers perform better than any individual predictor about making trading decisions in the stock market.
We study multistep Bayesian betting strategies in coin-tossing games in the framework of game-theoretic probability of Shafer and Vovk (2001). We show that by a countable mixture of these strategies, a gambler or an investor can exploit arbitrary pat terns of deviations of natures moves from independent Bernoulli trials. We then apply our scheme to asset trading games in continuous time and derive the exponential growth rate of the investors capital when the variation exponent of the asset price path deviates from two.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا