ﻻ يوجد ملخص باللغة العربية
Laguerre-Gaussian (LG) beam has orbital angular momentum (OAM). A particle trapped in an LG beam will rotate about the beam axis, due to the transfer of OAM. The rotation of the particle is usually in the same direction as that of the beam OAM. However, we discovere that when the LG beam is strongly focused, the rotation of the particle and the beam OAM might be in the opposite direction. This anomalous effect is caused by the negative torque on the particle exerted by the focused LG beam, which is similar to the optical pulling force in the linear case. We calculated the scattering force distribution of a micro-particle trapped in an optical tweezers formed by the strongly focused LG beam, and showed that there exist stable trajectories of the particle that controlled by the negative torque. We proposed several necessary conditions for observing the counter-intuitive trajectories. Our work reveals that the strongly trapped micro-particle exhibits diversity of motion patterns.
Transfer mechanism of orbital angular moment(OAM) of light to trapped ground-state atoms under paraxial approximation is well known. Here we show how optical OAM of a Laguerre-Gaussian(LG) beam under paraxial approximation can be transferred to trapp
Rotation is a common motional form in nature, existing from atoms and molecules, industrial turbines to astronomical objects. However, it still lacks an efficient and reliable method for real-time image processing of a fast-rotating object. Since the
Thus, the results of our studies lie in developing and implementing the basic principles of digital sorting the Laguerre-Gauss modes by radial numbers both for a non-degenerate and a degenerate state of a vortex beam subject to perturbations in the f
We found that small perturbations of the optical vortex core in the Laguerre-Gaussian (LG) beams generate a fine structure of the Hermite-Gauss (HG) mode spectrum. Such perturbations can be easily simulated by weak variations of amplitudes and phases
Vast geographical distances in Africa are a leading cause for the so-called digital divide due to the high cost of installing fibre. Free-Space Optical (FSO) communications offer a convenient and higher bandwidth alternative to point-to-point radio m