ترغب بنشر مسار تعليمي؟ اضغط هنا

On Remote Phonon Scattering

90   0   0.0 ( 0 )
 نشر من قبل Angela Dyson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar phonons can induce electric fields in an adjacent layer, whether non-polar or polar, producing remote phonon scattering of electrons. Treatment of remote phonon scattering has been based on the dielectric continuum model which takes only the electrical boundary conditions into account. We show that crystals whose polar modes satisfy both mechanical and electric boundary conditions cannot introduce remote phonon effects in the absence of dispersion. Further, even in the presence of dispersion, remote phonon effects are negligible, as a consequence of the necessity of satisfying mechanical boundary conditions.



قيم البحث

اقرأ أيضاً

We present measurements of the $D$ Raman mode in graphene and carbon nanotubes at different laser excitation energies. The Raman mode around 1050 - 1150,cm$^{-1}$ originates from a double-resonant scattering process of longitudinal acoustic (LA) phon ons with defects. We investigate its dependence on laser excitation energy, on the number of graphene layers and on the carbon nanotube diameter. We assign this Raman mode to so-called inner processes with resonant phonons mainly from the $Gamma-K$ high-symmetry direction. The asymmetry of the $D$ mode is explained by additional contributions from phonons next to the $Gamma-K$ line. Our results demonstrate the importance of inner contributions in the double-resonance scattering process and add a fast method to investigate acoustic phonons in graphene and carbon nanotubes by optical spectroscopy.
We present a microscopic calculation of magnetization damping for a magnetic toy model. The magnetic system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and the magnetization damping is due to coupling of the itinerant carriers to a phonon bath in the presence of spin-orbit coupling. Using a mean-field approximation for the kinetic exchange model and assuming the spin-orbit coupling to be of the Rashba form, we derive Boltzmann scattering integrals for the distributions and spin coherences in the case of an antiferromagnetic exchange splitting, including a careful analysis of the connection between lifetime broadening and the magnetic gap. For the Elliott-Yafet type itinerant spin dynamics we extract dephasing and magnetization times T_1 and T_2 from initial conditions corresponding to a tilt of the magnetization vector, and draw a comparison to phenomenological equations such as the Landau-Lifshitz or the Gilbert damping. We also analyze magnetization precession and damping for this system including an anisotropy field and find a carrier mediated dephasing of the localized spin via the mean-field coupling.
He atom scattering has been demonstrated to be a sensitive probe of the electron-phonon interaction parameter $lambda$ at metal and metal-overlayer surfaces. Here it is shown that the theory linking $lambda$ to the thermal attenuation of atom scatter ing spectra (the Debye-Waller factor), can be applied to topological semimetal surfaces, like the quasi-one dimensional charge-density-wave system Bi(114) and the layered pnictogen chalcogenides.
Landau level broadening mechanisms in electrically neutral and quasineutral graphene were investigated through micro-magneto-Raman experiments in three different samples, namely, a natural single-layer graphene flake and a back-gated single-layer dev ice, both deposited over Si/SiO2 substrates, and a multilayer epitaxial graphene employed as a reference sample. Interband Landau level transition widths were estimated through a quantitative analysis of the magnetophonon resonances associated with optically active Landau level transitions crossing the energy of the E_2g Raman-active phonon. Contrary to multilayer graphene, the single-layer graphene samples show a strong damping of the low-field resonances, consistent with an additional broadening contribution of the Landau level energies arising from a random strain field. This extra contribution is properly quantified in terms of a pseudomagnetic field distribution Delta_B = 1.0-1.7 T in our single-layer samples.
Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications in nano-electronics. In this work, we study the incoherent optical phonon and exciton population dy namics in monolayer WS2 by time-resolved spontaneous Raman scattering spectroscopy. Upon excitation of the exciton transition, both the Stokes and anti-Stokes optical phonon scattering strength exhibit a large reduction. Based on the detailed balance, the optical phonon population is retrieved, which shows an instant build-up and a relaxation lifetime of around 4 ps at an exciton density E12 cm-2. The corresponding optical phonon temperature rises by 25 K, eventually, after some 10s of picoseconds, leading to a lattice heating by only around 3 K. The exciton relaxation dynamics extracted from the transient vibrational Raman response shows a strong excitation density dependence, signaling an important bi-molecular contribution to the decay. The exciton relaxation rate is found to be (70 ps)-1 and exciton-exciton annihilation rate 0.1 cm2s-1. These results provide valuable insight into the thermal dynamics after optical excitation and enhance the understanding of the fundamental exciton dynamics in two-dimensional transition metal materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا