ترغب بنشر مسار تعليمي؟ اضغط هنا

An updated discussion of the solar abundance problem

121   0   0.0 ( 0 )
 نشر من قبل Francesco Villante L
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the level of agreement of a new generation of standard solar models (SSMs), Barcelona 2016 or B16 for short, with helioseismic and solar neutrino data, confirming that models implementing the AGSS09met surface abundances, based on refined three-dimensional hydrodynamical simulations of the solar atmosphere, do not not reproduce helioseismic constraints. We clarify that this solar abundance problem can be equally solved by a change of the composition and/or of the opacity of the solar plasma, since effects produced by variations of metal abundances are equivalent to those produced by suitable modifications of the solar opacity profile. We discuss the importance of neutrinos produced in the CNO cycle for removing the composition-opacity degeneracy and the perspectives for their future detection.

قيم البحث

اقرأ أيضاً

Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform Non-Local Thermodynamic Equilibrium (NLTE) calculations w ith 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R = 700 000, spatially-resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 +/- 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model-dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 +/- 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 +/- 0.03 dex.
The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in {em RHESSI} X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal a ssumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz. an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is $A({rm Fe}) = 7.91 pm 0.10$ (on a logarithmic scale, with $A({rm H}) = 12$), or $2.6 pm 0.6$ times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1,898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of $A({rm Fe})$ has important implications for radiation loss curves, which are estimated.
We re-examine a 50+ year-old problem of deep central reversals predicted for strong solar spectral lines, in contrast to the smaller reversals seen in observations. We examine data and calculations for the resonance lines of H I, Mg II and Ca II, the self-reversed cores of which form in the upper chromosphere. Based on 3D simulations as well as data for the Mg II lines from IRIS, we argue that the resolution lies not in velocity fields on scales in either of the micro- or macro-turbulent limits. Macro-turbulence is ruled out using observations of optically thin lines formed in the upper chromosphere, and by showing that it would need to have unreasonably special properties to account for critical observations of the Mg II resonance lines from the IRIS mission. The power in turbulence in the upper chromosphere may therefore be substantially lower than earlier analyses have inferred. Instead, in 3D calculations horizontal radiative transfer produces smoother source functions, smoothing out intensity gradients in wavelength and in space. These effects increase in stronger lines. Our work will have consequences for understanding the onset of the transition region, the energy in motions available for heating the corona, and for the interpretation of polarization data in terms of the Hanle effect applied to resonance line profiles.
80 - S. Buder 2018
The overlap between the spectroscopic Galactic Archaeology with HERMES (GALAH) survey & $Gaia$ provides a high-dimensional chemodynamical space of unprecedented size. We present a first analysis of a subset of this overlap, of 7066 dwarf, turn-off, & sub-giant stars. [...] We investigate correlations between chemical compositions, ages, & kinematics for this sample. Stellar parameters & elemental abundances are derived from the GALAH spectra with the spectral synthesis code SME. [...] We report Li, C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, as well as Ba & we note that we employ non-LTE calculations for Li, O, Al, & Fe. We show that the use of astrometric & photometric data improves the accuracy of the derived spectroscopic parameters, especially $log g$. [...] we recover the result that stars of the high-$alpha$ sequence are typically older than stars in the low-$alpha$ sequence, the latter spanning $-0.7<$[Fe/H]$<+0.5$. While these two sequences become indistinguishable in [$alpha$/Fe] vs. [Fe/H] at the metal-rich regime, we find that age can be used to separate stars from the extended high-$alpha$ & the low-$alpha$ sequence even in this regime. [...] we find that the old stars ($>8$ Gyr have lower angular momenta $L_z$ than the Sun, which implies that they are on eccentric orbits & originate from the inner disk. Contrary to some previous smaller scale studies we find a continuous evolution in the high-$alpha$-sequence up to super-solar [Fe/H] rather than a gap, which has been interpreted as a separate high-$alpha$ metal-rich population. Stars in our sample that are younger than 10 Gyr, are mainly found on the low $alpha$-sequence & show a gradient in $L_z$ from low [Fe/H] ($L_z>L_{z,odot}$) towards higher [Fe/H] ($L_z<L_{z,odot}$), which implies that the stars at the ends of this sequence are likely not originating from the close solar vicinity.
We study the solar wind helium-to-hydrogen abundances ($A_mathrm{He}$) relationship to solar cycle onset. Using OMNI/Lo data, we show that $A_mathrm{He}$ increases prior to sunspot number (SSN) minima. We also identify a rapid depletion and recovery in $A_mathrm{He}$ that occurs directly prior to cycle onset. This $A_mathrm{He}$ Shutoff happens at approximately the same time across solar wind speeds ($v_mathrm{sw}$), implying that it is formed by a mechanism distinct from the one that drives $A_mathrm{He}$s solar cycle scale variation and $v_mathrm{sw}$-dependent phase offset with respect to SSN. The time between successive $A_mathrm{He}$ shutoffs is typically on the order of the corresponding solar cycle length. Using Brightpoint (BP) measurements to provide context, we infer that this shutoff is likely related to the overlap of adjacent solar cycles and the equatorial flux cancelation of the older, extended solar cycle during Solar Minima.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا