ﻻ يوجد ملخص باللغة العربية
The overlap between the spectroscopic Galactic Archaeology with HERMES (GALAH) survey & $Gaia$ provides a high-dimensional chemodynamical space of unprecedented size. We present a first analysis of a subset of this overlap, of 7066 dwarf, turn-off, & sub-giant stars. [...] We investigate correlations between chemical compositions, ages, & kinematics for this sample. Stellar parameters & elemental abundances are derived from the GALAH spectra with the spectral synthesis code SME. [...] We report Li, C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, as well as Ba & we note that we employ non-LTE calculations for Li, O, Al, & Fe. We show that the use of astrometric & photometric data improves the accuracy of the derived spectroscopic parameters, especially $log g$. [...] we recover the result that stars of the high-$alpha$ sequence are typically older than stars in the low-$alpha$ sequence, the latter spanning $-0.7<$[Fe/H]$<+0.5$. While these two sequences become indistinguishable in [$alpha$/Fe] vs. [Fe/H] at the metal-rich regime, we find that age can be used to separate stars from the extended high-$alpha$ & the low-$alpha$ sequence even in this regime. [...] we find that the old stars ($>8$ Gyr have lower angular momenta $L_z$ than the Sun, which implies that they are on eccentric orbits & originate from the inner disk. Contrary to some previous smaller scale studies we find a continuous evolution in the high-$alpha$-sequence up to super-solar [Fe/H] rather than a gap, which has been interpreted as a separate high-$alpha$ metal-rich population. Stars in our sample that are younger than 10 Gyr, are mainly found on the low $alpha$-sequence & show a gradient in $L_z$ from low [Fe/H] ($L_z>L_{z,odot}$) towards higher [Fe/H] ($L_z<L_{z,odot}$), which implies that the stars at the ends of this sequence are likely not originating from the close solar vicinity.
Using data from the GALAH pilot survey, we determine properties of the Galactic thin and thick disks near the solar neighbourhood. The data cover a small range of Galactocentric radius ($7.9 leq R_mathrm{GC} leq 9.5$ kpc), but extend up to 4 kpc in h
The age-metallicity relation is a fundamental tool for constraining the chemical evolution of the Galactic disc. In this work we analyse the observational properties of this relation using binary stars that have not interacted consisting of a white d
We analyse the kinematics of disc stars observed by the RAVE survey in and beyond the Solar neighbourhood.We detect significant overdensities in the velocity distributions using a technique based on the wavelet transform.We find that the main local k
We present a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-li
The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the sola