ﻻ يوجد ملخص باللغة العربية
Internal preneighbourhood spaces were first conceived inside any finitely complete category with finite coproducts and proper factorisation structure in my earlier paper. In this paper a closure operation is introduced on internal preneighbourhood spaces and investigated along with closed morphisms and its close allies. Analogues of several well known classes of topological spaces for preneighbourhood spaces are investigated. The approach via preneighbourhood systems is shown to be more general than the closure operators and conveniently allows to identify properties of classes of morphisms which are independent of continuity of morphisms with respect to closure operators.
The notion of an internal preneighbourhood space on a finitely complete category with finite coproducts and a proper $(mathsf{E}, mathsf{M})$ system such that for each object $X$ the set of $mathsf{M}$-subobjects of $X$ is a complete lattice was init
The main aim of this paper is to provide a description of neighbourhood operators in finitely complete categories with finite coproducts and a proper factorisation system such that the semilattice of admissible subobjects make a distributive complete
Under a general categorical procedure for the extension of dual equivalences as presented in this papers predecessor, a new algebraically defined category is established that is dually equivalent to the category $bf LKHaus$ of locally compact Hausdor
In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Serre, Hurewicz stack.
In this article a sequential theory in the category of spaces and proper maps is described and developed. As a natural extension a sequential theory for exterior spaces and maps is obtained.