ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting electron-phonon couplings during photo-induced phase transition

75   0   0.0 ( 0 )
 نشر من قبل Takeshi Suzuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photo-induced phase transitions have been intensively studied owing to the ability to control a material of interest in the ultrafast manner, which can induce exotic phases unable to be attained at equilibrium. However, the key mechanisms are still under debate, and it has currently been a central issue how the couplings between the electron, lattice, and spin degrees of freedom are evolving during photo-induced phase transitions. Here, we develop a new analysis method, frequency-domain angle-resolved photoemission spectroscopy, to gain precise insight into electron-phonon couplings during photo-induced insulator-to-metal transitions for Ta$_2$NiSe$_5$. We demonstrate that multiple coherent phonons generated by displacive excitations show band-selective coupling to the electrons. Furthermore, we find that the lattice modulation corresponding to the 2 THz phonon mode, where Ta lattice is sheared along the a-axis, is the most relevant for the photo-induced semimetallic state.



قيم البحث

اقرأ أيضاً

Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photo-induced transition of a model charge-density-wave (CDW) compound, LaTe$_3$. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be quantitatively captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.
137 - D. J. Hilton 2007
We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.
Transition metal dichalcogenides (TMDs) are a class of widely studied 2D layered materials which exist in various polymorphs. The 1T phase of MoTe2 is of prime importance as it has been reported to show quantum spin hall (QSH) behavior with a fairly large band-gap of ~ 60 meV, in contrast to most QSH materials known. It is noteworthy that though the monolayer 1T-MoTe2 was initially predicted to show the QSH behavior, recent theoretical studies claim that the few-layered counterparts also exhibit higher order topological behavior. Besides, 1T-MoTe2 also undergoes a hysteretic phase transition to the Td phase (which is a type-II Weyl semimetal) by breaking the inversion symmetry of the crystal. While the phase transition between these two topological phases is of utmost importance, its study has been mostly restricted to bulk single crystal flakes, thereby not sufficiently exploring the effect of dimensionality. We have studied the phase transition in 1T-MoTe2 as a function of flake-thickness. Though our Raman studies show a suppression of the phase transition in the thin (thickness <10 nm) flakes [similar to the report Phys. Rev. B 97, 041410 (2018)], we have experimentally demonstrated the possibility of stabilizing the desired phase (1T or Td) at room temperature by charge doping. Further, we have observed clear signatures of electron-phonon coupling in MoTe2, which evolves as a function of flake-thickness and charge doping.
109 - T. Basu , T. Zou , Z. Dun 2020
Cubic spinel GeNi2O4 exhibits intriguing magnetic properties with two successive antiferromagnetic phase transitions (TN1 12.1 and TN2 11.4 K) with the absence of any structural transition. We have performed detailed heat capacity and magnetic measur ements in different crystallographic orientations. A new magnetic phase in presence of magnetic field (H > 4 T) along the [111] direction is revealed, which is not observed when the magnetic field is applied along the [100] and [110] directions. High field neutron powder diffraction measurements confirm such a change in magnetic phase, which could be ascribed to a spin reorientation in the presence of magnetic field. A strong magnetic anisotropy and competing magnetic interactions play a crucial role on the complex magnetic behavior in this cubic system.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا