ترغب بنشر مسار تعليمي؟ اضغط هنا

Training few-shot classification via the perspective of minibatch and pretraining

62   0   0.0 ( 0 )
 نشر من قبل Xueshuang Xiang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data and has drawn considerable attention in machine learning. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained to learn the ability of handling classification tasks on extremely large or infinite episodes representing different classification task, each with a small labeled support set and its corresponding query set. In this work, we advance this few-shot classification paradigm by formulating it as a supervised classification learning problem. We further propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in classification problems. Experimental results on a state-of-the-art few-shot classification method (prototypical networks) demonstrate that both the proposed training strategies can highly accelerate the training process without accuracy loss for varying few-shot classification problems on Omniglot and miniImageNet.



قيم البحث

اقرأ أيضاً

A meta-model is trained on a distribution of similar tasks such that it learns an algorithm that can quickly adapt to a novel task with only a handful of labeled examples. Most of current meta-learning methods assume that the meta-training set consis ts of relevant tasks sampled from a single distribution. In practice, however, a new task is often out of the task distribution, yielding a performance degradation. One way to tackle this problem is to construct an ensemble of meta-learners such that each meta-learner is trained on different task distribution. In this paper we present a method for constructing a mixture of meta-learners (MxML), where mixing parameters are determined by the weight prediction network (WPN) optimized to improve the few-shot classification performance. Experiments on various datasets demonstrate that MxML significantly outperforms state-of-the-art meta-learners, or their naive ensemble in the case of out-of-distribution as well as in-distribution tasks.
Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples. However, conventional time-series classification algorithms fail to tackle the few-shot scenario. Existing few-shot learning methods are proposed to tackle image or text data, and most of them are neural-based models that lack interpretability. This paper proposes an interpretable neural-based framework, namely textit{Dual Prototypical Shapelet Networks (DPSN)} for few-shot time-series classification, which not only trains a neural network-based model but also interprets the model from dual granularity: 1) global overview using representative time series samples, and 2) local highlights using discriminative shapelets. In particular, the generated dual prototypical shapelets consist of representative samples that can mostly demonstrate the overall shapes of all samples in the class and discriminative partial-length shapelets that can be used to distinguish different classes. We have derived 18 few-shot TSC datasets from public benchmark datasets and evaluated the proposed method by comparing with baselines. The DPSN framework outperforms state-of-the-art time-series classification methods, especially when training with limited amounts of data. Several case studies have been given to demonstrate the interpret ability of our model.
Recent algorithms with state-of-the-art few-shot classification results start their procedure by computing data features output by a large pretrained model. In this paper we systematically investigate which models provide the best representations for a few-shot image classification task when pretrained on the Imagenet dataset. We test their representations when used as the starting point for different few-shot classification algorithms. We observe that models trained on a supervised classification task have higher performance than models trained in an unsupervised manner even when transferred to out-of-distribution datasets. Models trained with adversarial robustness transfer better, while having slightly lower accuracy than supervised models.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
This paper studies few-shot relation extraction, which aims at predicting the relation for a pair of entities in a sentence by training with a few labeled examples in each relation. To more effectively generalize to new relations, in this paper we st udy the relationships between different relations and propose to leverage a global relation graph. We propose a novel Bayesian meta-learning approach to effectively learn the posterior distribution of the prototype vectors of relations, where the initial prior of the prototype vectors is parameterized with a graph neural network on the global relation graph. Moreover, to effectively optimize the posterior distribution of the prototype vectors, we propose to use the stochastic gradient Langevin dynamics, which is related to the MAML algorithm but is able to handle the uncertainty of the prototype vectors. The whole framework can be effectively and efficiently optimized in an end-to-end fashion. Experiments on two benchmark datasets prove the effectiveness of our proposed approach against competitive baselines in both the few-shot and zero-shot settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا