ترغب بنشر مسار تعليمي؟ اضغط هنا

On scattering for NLS: from Euclidean to hyperbolic space

170   0   0.0 ( 0 )
 نشر من قبل Remi Carles
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Valeria Banica




اسأل ChatGPT حول البحث

We prove asymptotic completeness in the energy space for the nonlinear Schrodinger equation posed on hyperbolic space in the radial case, in space dimension at least 4, and for any energy-subcritical, defocusing, power nonlinearity. The proof is based on simple Morawetz estimates and weighted Strichartz estimates. We investigate the same question on spaces which kind of interpolate between Euclidean space and hyperbolic space, showing that the family of short range nonlinearities becomes larger and larger as the space approaches the hyperbolic space. Finally, we describe the large time behavior of radial solutions to the free dynamics.

قيم البحث

اقرأ أيضاً

258 - Remi Carles 2009
We consider the nonlinear Schrodinger equation, with mass-critical nonlinearity, focusing or defocusing. For any given angle, we establish the existence of infinitely many functions on which the scattering operator acts as a rotation of this angle. U sing a lens transform, we reduce the problem to the existence of a solution to a nonlinear Schrodinger equation with harmonic potential, satisfying suitable periodicity properties. The existence of infinitely many such solutions is proved thanks to a constrained minimization problem.
In this paper, we first prove that the cubic, defocusing nonlinear Schrodinger equation on the two dimensional hyperbolic space with radial initial data in $H^s(mathbb{H}^2)$ is globally well-posed and scatters when $s > frac{3}{4}$. Then we extend t he result to nonlineraities of order $p>3$. The result is proved by extending the high-low method of Bourgain in the hyperbolic setting and by using a Morawetz type estimate proved by the first author and Ionescu.
We consider dispersion generalized nonlinear Schrodinger equations (NLS) of the form $i partial_t u = P(D) u - |u|^{2 sigma} u$, where $P(D)$ denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers $sigma in mathbb{N}$. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.
We investigate the large-distance asymptotics of optimal Hardy weights on $mathbb Z^d$, $dgeq 3$, via the super solution construction. For the free discrete Laplacian, the Hardy weight asymptotic is the familiar $frac{(d-2)^2}{4}|x|^{-2}$ as $|x|toin fty$. We prove that the inverse-square behavior of the optimal Hardy weight is robust for general elliptic coefficients on $mathbb Z^d$: (1) averages over large sectors have inverse-square scaling, (2), for ergodic coefficients, there is a pointwise inverse-square upper bound on moments, and (3), for i.i.d. coefficients, there is a matching inverse-square lower bound on moments. The results imply $|x|^{-4}$-scaling for Rellich weights on $mathbb Z^d$. Analogous results are also new in the continuum setting. The proofs leverage Greens function estimates rooted in homogenization theory.
We consider discrete analogues of two well-known open problems regarding invariant measures for dispersive PDE, namely, the invariance of the Gibbs measure for the continuum (classical) Heisenberg model and the invariance of white noise under focusin g cubic NLS. These continuum models are completely integrable and connected by the Hasimoto transform; correspondingly, we focus our attention on discretizations that are also completely integrable and also connected by a discrete Hasimoto transform. We consider these models on the infinite lattice $mathbb Z$. Concretely, for a completely integrable variant of the classical Heisenberg spin chain model (introduced independently by Haldane, Ishimori, and Sklyanin) we prove the existence and uniqueness of solutions for initial data following a Gibbs law (which we show is unique) and show that the Gibbs measure is preserved under these dynamics. In the setting of the focusing Ablowitz--Ladik system, we prove invariance of a measure that we will show is the appropriate discrete analogue of white noise. We also include a thorough discussion of the Poisson geometry associated to the discrete Hasimoto transform introduced by Ishimori that connects the two models studied in this article.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا