ﻻ يوجد ملخص باللغة العربية
Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form continuous profit maximization (CPM-MS) problem, whose domain is on integer lattices. The objective function of our CPM-MS is dr-submodular, but non-monotone. It is a typical case of unconstrained dr-submodular maximization (UDSM) problem, and take it as a starting point, we study UDSM systematically in this paper, which is very different from those existing researcher. First, we introduce the lattice-based double greedy algorithm, which can obtain a constant approximation guarantee. However, there is a strict and unrealistic condition that requiring the objective value is non-negative on the whole domain, or else no theoretical bounds. Thus, we propose a technique, called lattice-based iterative pruning. It can shrink the search space effectively, thereby greatly increasing the possibility of satisfying the non-negative objective function on this smaller domain without losing approximation ratio. Then, to overcome the difficulty to estimate the objective value of CPM-MS, we adopt reverse sampling strategies, and combine it with lattice-based double greedy, including pruning, without losing its performance but reducing its running time. The entire process can be considered as a general framework to solve the UDSM problem, especially for applying to social networks. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed algorithms.
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $epsilon$, our algorithm achieves a $1/e - epsilon$ appr
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app
Online social network has been one of the most important platforms for viral marketing. Most of existing researches about diffusion of adoptions of new products on networks are about one diffusion. That is, only one piece of information about the pro
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set functi