ترغب بنشر مسار تعليمي؟ اضغط هنا

Point Defects in Tight Binding Models for Insulators

97   0   0.0 ( 0 )
 نشر من قبل Jack Thomas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is established. We also formulate the thermodynamic limit model at zero Fermi-temperature, extending the results of [H. Chen, J. Lu, C. Ortner. Arch. Ration. Mech. Anal., 2018]. We discuss the non-trivial relationship between taking zero temperature and thermodynamic limits in the finite Fermi-temperature models.



قيم البحث

اقرأ أيضاً

The tight binding model is a minimalistic electronic structure model for predicting properties of materials and molecules. For insulators at zero Fermi-temperature we show that the potential energy surface of this model can be decomposed into exponen tially localised site energy contributions, thus providing qualitatively sharp estimates on the interatomic interaction range which justifies a range of multi-scale models. For insulators at finite Fermi-temperature we obtain locality estimates that are uniform in the zero-temperature limit. A particular feature of all our results is that they depend only weakly on the point spectrum. Numerical tests confirm our analytical results. This work extends and strengthens (Chen, Ortner 2016) and (Chen, Lu, Ortner 2018) for finite temperature models.
81 - Jack Thomas 2020
A key starting assumption in many classical interatomic potential models for materials is a site energy decomposition of the potential energy surface into contributions that only depend on a small neighbourhood. Under a natural stability condition, w e construct such a spatial decomposition for self-consistent tight binding models, extending recent results for linear tight binding models to the non-linear setting.
Applications of the Huckel (tight binding) model are ubiquitous in quantum chemistry and solid state physics. The matrix representation of this model is isomorphic to an unoriented vertex adjacency matrix of a bipartite graph, which is also the Lapla cian matrix plus twice the identity. In this paper, we analytically calculate the determinant and, when it exists, the inverse of this matrix in connection with the Greens function, $mathbf{G}$, of the $Ntimes N$ Huckel matrix. A corollary is a closed form expression for a Harmonic sum (Eq. 12). We then extend the results to $d-$dimensional lattices, whose linear size is $N$. The existence of the inverse becomes a question of number theory. We prove a new theorem in number theory pertaining to vanishing sums of cosines and use it to prove that the inverse exists if and only if $N+1$ and $d$ are odd and $d$ is smaller than the smallest divisor of $N+1$. We corroborate our results by demonstrating the entry patterns of the Greens function and discuss applications related to transport and conductivity.
156 - Lung-Chi Chen , Akira Sakai 2012
We consider long-range self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$ that are defined by power-law decaying pair potentials of the form $D(x)asymp|x|^{-d-alpha}$ with $alpha>0$. The upper-critical dimension $d_{mathrm{c}}$ is $ 2(alphawedge2)$ for self-avoiding walk and the Ising model, and $3(alphawedge2)$ for percolation. Let $alpha e2$ and assume certain heat-kernel bounds on the $n$-step distribution of the underlying random walk. We prove that, for $d>d_{mathrm{c}}$ (and the spread-out parameter sufficiently large), the critical two-point function $G_{p_{mathrm{c}}}(x)$ for each model is asymptotically $C|x|^{alphawedge2-d}$, where the constant $Cin(0,infty)$ is expressed in terms of the model-dependent lace-expansion coefficients and exhibits crossover between $alpha<2$ and $alpha>2$. We also provide a class of random walks that satisfy those heat-kernel bounds.
Within the framework of quantum mechanics working with one-dimensional, manifestly non-Hermitian Hamiltonians $H=T+V$ the traditional class of the exactly solvable models with local point interactions $V=V(x)$ is generalized. The consequences of the use of the nonlocal point interactions such that $(V f)(x) = int K(x,s) f(s) ds$ are discussed using the suitably adapted formalism of boundary triplets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا