ﻻ يوجد ملخص باللغة العربية
Applications of the Huckel (tight binding) model are ubiquitous in quantum chemistry and solid state physics. The matrix representation of this model is isomorphic to an unoriented vertex adjacency matrix of a bipartite graph, which is also the Laplacian matrix plus twice the identity. In this paper, we analytically calculate the determinant and, when it exists, the inverse of this matrix in connection with the Greens function, $mathbf{G}$, of the $Ntimes N$ Huckel matrix. A corollary is a closed form expression for a Harmonic sum (Eq. 12). We then extend the results to $d-$dimensional lattices, whose linear size is $N$. The existence of the inverse becomes a question of number theory. We prove a new theorem in number theory pertaining to vanishing sums of cosines and use it to prove that the inverse exists if and only if $N+1$ and $d$ are odd and $d$ is smaller than the smallest divisor of $N+1$. We corroborate our results by demonstrating the entry patterns of the Greens function and discuss applications related to transport and conductivity.
We consider a one-dimensional gas of spin-1/2 fermions interacting through $delta$-function repulsive potential of an arbitrary strength. For the case of all fermions but one having spin up, we calculate time-dependent two-point correlation function
The Greens function has been an indispensable tool to study many-body systems that remain one of the biggest challenges in modern quantum physics for decades. The complicated calculation of Greens function impedes the research of many-body systems. T
In [BEI] we introduced a Levy process on a hierarchical lattice which is four dimensional, in the sense that the Greens function for the process equals 1/x^2. If the process is modified so as to be weakly self-repelling, it was shown that at the crit
We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is est
In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an in