ﻻ يوجد ملخص باللغة العربية
Optical Fe II emission is a strong feature in quasar spectra originating in the broad-line region (BLR). The difficulty in understanding the complex Fe II pseudo-continuum has led us to search for other reliable, simpler ionic species such as Ca II. In this first part of the series, we confirm the strong correlation between the strengths of two emission features, the optical Fe II and the NIR Ca II, both from observations and photoionization modelling. With the inclusion of an up-to-date compilation of observations with both optical Fe II and NIR Ca II measurements, we span a wider and more extended parameter space and confirm the common origin of these two spectral features with our photoionization models using CLOUDY. Taking into account the effect of dust into our modelling, we constrain the BLR parameter space (primarily, in terms of the ionization parameter and local cloud density) as a function of the strengths of Fe II and Ca II emission.
Modelling the low ionization lines (LIL) in active galactic nuclei still faces problems in explaining the observed equivalent widths (EWs). We examine the optical Fe II and near-infrared Ca II triplet (CaT) emission strengths using the photoionizatio
In this second paper in the series, we carefully analyze the observational properties of the optical FeII and NIR CaII triplet in Active Galactic Nuclei, as well as the luminosity, black hole mass, and Eddington ratio in order to define the driving m
We present $81$ near-infrared (NIR) spectra of $30$ Type II supernovae (SNe II) from the Carnegie Supernova Project-II (CSP-II), the largest such dataset published to date. We identify a number of NIR features and characterize their evolution over ti
We extend our previous calibration of the infrared Ca II triplet as metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high-metallicity
(ABRIDGED) Context. The line strength of the Ca II triplet (CaT) lines are a proxy to measure metallicity from individual stellar spectra of bright red giant stars. It is a mandatory step to remove the magnitude (proxy for gravity, temperature and lu