ﻻ يوجد ملخص باللغة العربية
We extend our previous calibration of the infrared Ca II triplet as metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high-metallicity using a combination of a Lorentzian plus a Gaussian to reproduce the line profiles, in this paper we address the non-linearity at low-metallicity following the suggestion of Starkenburg et al 2010 of adding two non-linear terms to the relation among the [Fe/H], luminosity, and strength of the Calcium triplet lines. Our calibration thus extends from -4.0 to +0.5 in metallicity and is presented using four different luminosity indicators: V-V_{HB}, M_V, M_I, and M_K. The calibration obtained in this paper results in a tight correlation between [Fe/H] abundances measured from high resolution spectra and [Fe/H] values derived from the CaT, over the whole metallicity range covered.
The NIR Ca II triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf ga
Medium resolution (R=4,000 to 9,000) spectra of the near infrared Ca II lines (at 8498, 8542, and 8662 A) in M31 globular cluster integrated light spectra are presented. In individual stars the Ca II triplet (CaT) traces stellar metallicity; this pap
In this second paper in the series, we carefully analyze the observational properties of the optical FeII and NIR CaII triplet in Active Galactic Nuclei, as well as the luminosity, black hole mass, and Eddington ratio in order to define the driving m
Modelling the low ionization lines (LIL) in active galactic nuclei still faces problems in explaining the observed equivalent widths (EWs). We examine the optical Fe II and near-infrared Ca II triplet (CaT) emission strengths using the photoionizatio
The Pristine survey uses narrow-band photometry to derive precise metallicities down to the extremely metal-poor regime ([Fe/H] < -3), and currently consists of over 4 million FGK-type stars over a sky area of $sim 2~500, mathrm{deg}^2$. We focus our