ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfaces and the extended Hilbert space of Chern-Simons theory

109   0   0.0 ( 0 )
 نشر من قبل Jackson Fliss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low energy effective field theories of $(2+1)$ dimensional topological phases of matter provide powerful avenues for investigating entanglement in their ground states. In cite{Fliss:2017wop} the entanglement between distinct Abelian topological phases was investigated through Abelian Chern-Simons theories equipped with a set of topological boundary conditions (TBCs). In the present paper we extend the notion of a TBC to non-Abelian Chern-Simons theories, providing an effective description for a class of gapped interfaces across non-Abelian topological phases. These boundary conditions furnish a defining relation for the extended Hilbert space of the quantum theory and allow the calculation of entanglement directly in the gauge theory. Because we allow for trivial interfaces, this includes a generic construction of the extended Hilbert space in any (compact) Chern-Simons theory quantized on a Riemann surface. Additionally, this provides a constructive and principled definition for the Hilbert space of effective ground states of gapped phases of matter glued along gapped interfaces. Lastly, we describe a generalized notion of surgery, adding a powerful tool from topological field theory to the gapped interface toolbox.



قيم البحث

اقرأ أيضاً

270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der ived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
176 - Amit Giveon , David Kutasov 2008
We argue that N=2 supersymmetric Chern-Simons theories exhibit a strong-weak coupling Seiberg-type duality. We also discuss supersymmetry breaking in these theories.
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I n examples that we study we observe that contribution of irreducible flat connections to the path integral can be recovered from asymptotic expansions around abelian flat connections. We also discuss connection to Floer instanton moduli spaces, disk instantons in 2d sigma models, and length spectra of complex geodesics on the A-polynomial curve.
Some time ago, the infrared limit of the Abelian Chern-Simons-Proca theory was investigated. In this letter, we show how the Chern-Simons-Proca theory can emerge as an effective low energy theory. Our result is obtained by means of a procedure that t akes into account the proliferation, or dilution, of topological defects presented in the system.
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca llias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا