ترغب بنشر مسار تعليمي؟ اضغط هنا

On a dual representation of the Goldstone manifold

158   0   0.0 ( 0 )
 نشر من قبل Carlos Jimenez-Hoyos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An intrinsic wavefunction with a broken continuous symmetry can be rotated with no energy penalty leading to an infinite set of degenerate states known as a Goldstone manifold. In this work, we show that a dual representation of such manifold exists that is sampled by an infinite set of non-degenerate states. A proof that both representations are equivalent is provided. From the work of Peierls and Yoccoz (Proc. Phys. Soc. A {bf 70}, 381 (1957)), it is known that collective states with good symmetries can be obtained from the Goldstone manifold using a generator coordinate trial wavefunction. We show that an analogous generator coordinate can be used in the dual representation; we provide numerical evidence using an intrinsic wavefunction with particle number symmetry-breaking for the electronic structure of the Be atom and one with $hat{S}^z$ symmetry-breaking for a H$_5$ ring. We discuss how the dual representation can be used to evaluate expectation values of symmetry-projected states when the norm $|langle Phi | hat{P}^q | Phi rangle|$ becomes very small.

قيم البحث

اقرأ أيضاً

We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete e lectronic states. The resulting expression is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact propagator lead to existing approximate semiclassical and mixed quantum-classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact propagator, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.
The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. The calculation of contracted two-electron matrix elements among orbitals requires only O(N log(N)) multiplication operations, not O(N^4), where N is the number of basis functions; N = n^3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionization potentials are reported for one- (He^+, H_2^+ ), two- (H_2, He), ten- (CH_4) and 56-electron (C_8H_8) systems.
Variational quantum eigensolver (VQE) is demonstrated to be the promising methodology for quantum chemistry based on near-term quantum devices. However, many problems are yet to be investigated for this methodology, such as the influences of optimiza tion algorithm and basis size on the accuracy and efficiency for quantum computing. To address these issues, five molecules (H2, LiH, HF, N2 and F2) are studied in this work based on the VQE method using unitary coupled cluster (UCC) ansatz. The performance of the gradient optimization L-BFGS-B is compared with that of the direct search method COBYLA. The former converges more quickly, but the accuracy of energy surface is a little lower. The basis set shows a vital influence on the accuracy and efficiency. A large basis set generally provides an accurate energy surface, but induces a significant increase in computing time. The 631g basis is generally required from the energy surface of the simplest H2 molecule. For practical applications of VQE, complete active space (CAS) is suggested based on limited quantum resources. With the same number of qubits, more occupied orbitals included in CAS gives a better accuracy for the energy surface and a smaller evaluation number in the VQE optimization. Additionally, the electronic structure, such as filling fraction of orbitals, the bond strength of a molecule and the maximum nuclear charge also influences the performance of optimization, where half occupation of orbitals generally requires a large computation cost.
The possibility of using quantum computers for electronic structure calculations has opened up a promising avenue for computational chemistry. Towards this direction, numerous algorithmic advances have been made in the last five years. The potential of quantum annealers, which are the prototypes of adiabatic quantum computers, is yet to be fully explored. In this work, we demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems. These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience. The excited states are treated using two methods, time-dependent Hartree-Fock (TDHF) and time-dependent density-functional theory (TDDFT), both within a commonly used Tamm-Dancoff approximation (TDA). The resulting TDA eigenvalue equations are solved on a D-Wave quantum annealer using the Quantum Annealer Eigensolver (QAE), developed previously. The method is shown to reproduce a typical basis set convergence on the example H$_2$ molecule and is also applied to several other molecular species. Characteristic properties such as transition dipole moments and oscillator strengths are computed as well. Three potential energy profiles for excited states are computed for NH$_3$ as a function of the molecular geometry. Similar to previous studies, the accuracy of the method is dependent on the accuracy of the intermediate meta-heuristic software called qbsolv.
We propose a new strategy to evaluate the partition function of lattice QCD with Wilson gauge action coupled to staggered fermions, based on a strong coupling expansion in the inverse bare gauge coupling $beta= 2N/g^{2}$. Our method makes use of the recently developed formalism to evaluate the ${rm SU}(N)$ $1-$link integrals and consists in an exact rewriting of the partition function in terms of a set of additional dual degrees of freedom which we call Decoupling Operator Indices (DOI). The method is not limited to any particular number of dimensions or gauge group ${rm U}(N)$, ${rm SU}(N)$. In terms of the DOI the system takes the form of a Tensor Network which can be simulated using Worm-like algorithms. Higher order $beta$-corrections to strong coupling lattice QCD can be, in principle, systematically evaluated, helping to answer the question whether the finite density sign problem remains mild when plaquette contributions are included. Issues related to the complexity of the description and strategies for the stochastic evaluation of the partition function are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا