ﻻ يوجد ملخص باللغة العربية
We propose a new strategy to evaluate the partition function of lattice QCD with Wilson gauge action coupled to staggered fermions, based on a strong coupling expansion in the inverse bare gauge coupling $beta= 2N/g^{2}$. Our method makes use of the recently developed formalism to evaluate the ${rm SU}(N)$ $1-$link integrals and consists in an exact rewriting of the partition function in terms of a set of additional dual degrees of freedom which we call Decoupling Operator Indices (DOI). The method is not limited to any particular number of dimensions or gauge group ${rm U}(N)$, ${rm SU}(N)$. In terms of the DOI the system takes the form of a Tensor Network which can be simulated using Worm-like algorithms. Higher order $beta$-corrections to strong coupling lattice QCD can be, in principle, systematically evaluated, helping to answer the question whether the finite density sign problem remains mild when plaquette contributions are included. Issues related to the complexity of the description and strategies for the stochastic evaluation of the partition function are discussed.
Our knowledge about the QCD phase diagram at finite baryon chemical potential $mu_{B}$ is limited by the well known sign problem. The path integral measure, in the standard determinantal approach, becomes complex at finite $mu_{B}$ so that standard M
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we pr
Recent results from lattice QCD simulations provide a realistic picture, based upon first principles, of~$Upsilon$ physics. We combine these results with the experimentally measured mass of the $Upsilon$~meson to obtain an accurate and reliable value
The simulation of lattice QCD on massively parallel computers stimulated the development of scalable algorithms for the solution of sparse linear systems. We tackle the problem of the Wilson-Dirac operator inversion by combining a Schwarz alternating
We present results from our simulations of quantum chromodynamics (QCD) with four flavors of quarks: u, d, s, and c. These simulations are performed with a one-loop Symanzik improved gauge action, and the highly improved staggered quark (HISQ) action