ترغب بنشر مسار تعليمي؟ اضغط هنا

An Extreme Ultraviolet Wave Associated with A Solar Filament Activation

65   0   0.0 ( 0 )
 نشر من قبل Ruisheng Zheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme ultraviolet (EUV) waves are impressive coronal propagating disturbances. They are closely associated with various eruptions, and can used for the global coronal seismology and the acceleration of solar energetic particles. Hence, the study of EUV waves plays an important role in solar eruptions and Space Weather. Here we present an EUV wave associated with a filament activation that did not evolve into any eruption. Due to the continuous magnetic flux emergence and cancellation around its one end, the filament rose with untwisting motion, and the filament mass flowed towards another end along the rising fields. Intriguingly, following the filament activation, an EUV wave formed with a fast constant speed ($sim$500 km s$^{-1}$) ahead of the mass flow, and the overlying coronal loops expanded both in lateral and radial directions. Excluding the possibility of a remote flare and an absent coronal mass ejection, we suggest that the EUV wave was only closely associated with the filament activation. Furthermore, their intimate spacial and temporal relationship indicates that the EUV wave was likely directly triggered by the lateral expansion of overlying loops. We propose that the EUV wave can be interpreted as linear fast-mode wave, and the most vital key for the successful generation of the EUV wave is the impulsive early-phase lateral expansion of overlying loops that was driven by the activated filament mass flow without any eruption.

قيم البحث

اقرأ أيضاً

Extreme ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter ambient coronal structure. We present a first example of upward SWs in a s treamer-like structure after the passing of an EUV wave. The event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a CME, a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of $sim$1000 km s$^{-1}$, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly ($sim$80 km s$^{-1}$) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All the results show the EUV wave is a fast-mode magnetohydrodynamic shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of streamer-like structure, and upward SWs possibly resulted from the release of trapped waves in the form of slow-mode. It is believed that an interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
67 - Y. H. Miao , Y. Liu , H. B. Li 2017
In this paper, we present a detailed analysis of a coronal blowout jet eruption which was associated with an obvious extreme-ultraviolet (EUV) wave and one complicated coronal mass ejection (CME) event based on the multi-wavelength and multi-view-ang le observations from {sl Solar Dynamics Observatory} and {sl Solar Terrestrial Relations Observatory}. It is found that the triggering of the blowout jet was due to the emergence and cancellation of magnetic fluxes on the photosphere. During the rising stage of the jet, the EUV wave appeared just ahead of the jet top, lasting about 4 minutes and at a speed of 458 - speed{762}. In addition, obvious dark material is observed along the EUV jet body, which confirms the observation of a mini-filament eruption at the jet base in the chromosphere. Interestingly, two distinct but overlapped CME structures can be observed in corona together with the eruption of the blowout jet. One is in narrow jet-shape, while the other one is in bubble-shape. The jet-shaped component was unambiguously related with the outwardly running jet itself, while the bubble-like one might either be produced due to the reconstruction of the high coronal fields or by the internal reconnection during the mini-filament ejection according to the double-CME blowout jet model firstly proposed by Shen et al. (2012b), suggesting more observational evidence should be supplied to clear the current ambiguity based on large samples of blowout jets in future studies.
Coronal disturbances associated with solar flares, such as H$alpha$ Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves are discussed herein in relation to magnetohydrodynamics fast-mode waves or shocks in the corona. To understan d the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a dandelion, associated with the M1.6 flare that occurred on 2011 February 16 in the H$alpha$ images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H$alpha$ images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the extreme ultraviolet images data taken by the Atmospheric Imaging Assembly on board the {it Solar Dynamics Observatory} and by the Extreme Ultraviolet Imager on board the {it Solar Terrestrial Relations Observatory-Ahead}, we confirm that the winking filaments were activated by the EUV coronal wave.
In this paper, we reanalyze the M1.2 confined flare with a large extreme-ultraviolet (EUV) late phase on 2011 September 9, focusing on its energy partition. The radiation ($sim$5.4$times$10$^{30}$ erg) in 1$-$70 {AA} is nearly eleven times larger tha n the radiation in 70$-$370 {AA}, and is nearly 180 times larger than the radiation in 1$-$8 {AA}. The peak thermal energy of the post-flare loops is estimated to be (1.7$-$1.8)$times$10$^{30}$ erg based on a simplified schematic cartoon. Based on previous results of Enthalpy-Based Thermal Evolution of Loops (EBTEL) simulation, the energy inputs in the main flaring loops and late-phase loops are (1.5$-$3.8)$times$10$^{29}$ erg and 7.7$times$10$^{29}$ erg, respectively. The nonthermal energy ((1.7$-$2.2)$times$10$^{30}$ erg) of the flare-accelerated electrons is comparable to the peak thermal energy and is sufficient to provide the energy input of the main flaring loops and late-phase loops. The magnetic free energy (9.1$times$10$^{31}$ erg) before flare is large enough to provide the heating requirement and radiation, indicating that the magnetic free energy is adequate to power the flare.
84 - J. Q. Sun , X. Cheng , M. D. Ding 2015
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult t o observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $sim$1 to $ge$5 MK. Shortly afterwards, warm flare loops ($sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a 3D configuration and reveal its origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا