ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale invariance of cell size fluctuations in starving bacteria

98   0   0.0 ( 0 )
 نشر من قبل Takuro Shimaya
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a novel microfluidic device and using E. coli, we investigate the response of cell size fluctuations against starvation. By abruptly switching to non-nutritious medium, we find that the cell size distribution changes but satisfies scale invariance: the rescaled distribution is kept unchanged and determined by the growth condition before starvation. These findings are underpinned by a model based on cell growth and cell cycle. Further, we numerically determine the range of validity of the scale invariance over various characteristic times of the starvation process, and find the violation of the scale invariance for slow starvation. Our results, combined with theoretical arguments, suggest the relevance of the multifork replication, which helps retaining information of cell cycle states and may thus result in the scale invariance.

قيم البحث

اقرأ أيضاً

We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomere s become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.
153 - Chiu Fan Lee 2010
In a well-stirred system undergoing chemical reactions, fluctuations in the reaction propensities are approximately captured by the corresponding chemical Langevin equation. Within this context, we discuss in this work how the Kramers escape theory c an be used to predict rare events in chemical reactions. As an example, we apply our approach to a recently proposed model on cell proliferation with relevance to skin cancer [P.B. Warren, Phys. Rev. E {bf 80}, 030903 (2009)]. In particular, we provide an analytical explanation for the form of the exponential exponent observed in the onset rate of uncontrolled cell proliferation.
The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisati on in response to an opposing instructive cue, which we here consider by example of experimentally inducible body axis
Despite the absence of a membrane-enclosed nucleus, the bacterial DNA is typically condensed into a compact body - the nucleoid. This compaction influences the localization and dynamics of many cellular processes including transcription, translation, and cell division. Here, we develop a model that takes into account steric interactions among the components of the Escherichia coli transcriptional-translational machinery (TTM) and out-of-equilibrium effects of mRNA transcription, translation, and degradation, in order to explain many observed features of the nucleoid. We show that steric effects, due to the different molecular shapes of the TTM components, are sufficient to drive equilibrium phase separation of the DNA, explaining the formation and size of the nucleoid. In addition, we show that the observed positioning of the nucleoid at midcell is due to the out-of-equilibrium process of messenger RNA (mRNA) synthesis and degradation: mRNAs apply a pressure on both sides of the nucleoid, localizing it to midcell. We demonstrate that, as the cell grows, the production of these mRNAs is responsible for the nucleoid splitting into two lobes, and for their well-known positioning to 1/4 and 3/4 positions on the long cell axis. Finally, our model quantitatively accounts for the observed expansion of the nucleoid when the pool of cytoplasmic mRNAs is depleted. Overall, our study suggests that steric interactions and out-of-equilibrium effects of the TTM are key drivers of the internal spatial organization of bacterial cells.
We study the dynamics of a thick polar epithelium subjected to the action of both an electric and a flow field in a planar geometry. We develop a generalized continuum hydrodynamic description and describe the tissue as a two component fluid system. The cells and the interstitial fluid are the two components and we keep all terms allowed by symmetry. In particular we keep track of the cell pumping activity for both solvent flow and electric current and discuss the corresponding orders of magnitude. We study the growth dynamics of tissue slabs, their steady states and obtain the dependence of the cell velocity, net cell division rate, and cell stress on the flow strength and the applied electric field. We find that finite thickness tissue slabs exist only in a restricted region of phase space and that relatively modest electric fields or imposed external flows can induce either proliferation or death.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا