ﻻ يوجد ملخص باللغة العربية
In a well-stirred system undergoing chemical reactions, fluctuations in the reaction propensities are approximately captured by the corresponding chemical Langevin equation. Within this context, we discuss in this work how the Kramers escape theory can be used to predict rare events in chemical reactions. As an example, we apply our approach to a recently proposed model on cell proliferation with relevance to skin cancer [P.B. Warren, Phys. Rev. E {bf 80}, 030903 (2009)]. In particular, we provide an analytical explanation for the form of the exponential exponent observed in the onset rate of uncontrolled cell proliferation.
We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomere
We study the dynamics of a thick polar epithelium subjected to the action of both an electric and a flow field in a planar geometry. We develop a generalized continuum hydrodynamic description and describe the tissue as a two component fluid system.
In stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a novel microfluidic device and using E. coli, we investigate the resp
We derive the full kinetic equations describing the evolution of the probability density distribution for a structured population such as cells distributed according to their ages and sizes. The kinetic equations for such a sizer-timer model incorpor
The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisati