ﻻ يوجد ملخص باللغة العربية
The problem of high-speed transport for cold atoms with minimal heating has received considerable attention in theory and experiment. Much theoretical work has focused on solutions of general problems, often assuming a harmonic trapping potential or a 1D geometry. However in the case of optical conveyor belts these assumptions are not always valid. Here we present experimental and numerical studies of the effects of various motional parameters on heating and retention of atoms transported in an optical conveyor. Our numerical model is specialized to the geometry of a moving optical lattice and uses dephasing in the density matrix formalism to account for effects of motion in the transverse plane. We verify the model by a comparison with experimental measurements, and use it to gain further insight into the relationship between the conveyors performance and the various parameters of the system.
Using optical dipole forces we have realized controlled transport of a single or any desired small number of neutral atoms over a distance of a centimeter with sub-micrometer precision. A standing wave dipole trap is loaded with a prescribed number o
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an
We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a
We have performed experiments using a 3D-Bose-Einstein condensate of sodium atoms in a 1D optical lattice to explore some unusual properties of band-structure. In particular, we investigate the loading of a condensate into a moving lattice and find n
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modula