ﻻ يوجد ملخص باللغة العربية
The chiral QED$_3$--Gross-Neveu-Yukawa (QED$_3$-GNY) theory is a $2+1$-dimensional U(1) gauge theory with $N_f$ flavors of four-component Dirac fermions coupled to a scalar field. For $N_f=1$, the specific chiral Ising QED$_3$-GNY model has recently been conjectured to be dual to the deconfined quantum critical point that describes Neel--valence-bond-solid transition of frustrated quantum magnets on square lattice. We study the universal critical behaviors of the chiral QED$_3$-GNY model in $d=4-epsilon$ dimensions for an arbitrary $N_f$ . We calculate the boson anomalous dimensions, inverse correlation length exponent, as well as the scaling dimensions of nonsinglet fermion bilinear in the chiral QED$_3$-GNY model. The Pad$acute{e}$ estimates for the exponents are obtained in the chiral Ising-, XY- and Heisenberg-QED$_3$-GNY universality class respectively. We also establish the general condition of the supersymmetric criticality for the ungauged QED$_3$-GNY model. For the conjectured duality between chiral QED$_3$-GNY critical point and deconfined quantum critical point, we find the inverse correlation length exponent has a lower boundary $ u^{-1}>0.75$, beyond which the Ising-QED$_3$-GNY--$mathbb{C}$P$^1$ duality may hold.
We study the universal critical properties of the QED$_3$-Gross-Neveu-Yukawa model with $N$ flavors of four-component Dirac fermions coupled to a real scalar order parameter at four-loop order in the $epsilon$ expansion below four dimensions. For $N=
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In
An important yet largely unsolved problem in the statistical mechanics of disordered quantum systems is to understand how quenched disorder affects quantum phase transitions in systems of itinerant fermions. In the clean limit, continuous quantum pha
The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by c
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Ne