ﻻ يوجد ملخص باللغة العربية
For two classes of Mean Field Game systems we study the convergence of solutions as the interest rate in the cost functional becomes very large, modeling agents caring only about a very short time-horizon, and the cost of the control becomes very cheap. The limit in both cases is a single first order integro-partial differential equation for the evolution of the mass density. The first model is a 2nd order MFG system with vanishing viscosity, and the limit is an aggregation equation. The result has an interpretation for models of collective animal behaviour and of crowd dynamics. The second class of problems are 1st order MFGs of acceleration and the limit is the kinetic equation associated to the Cucker-Smale model. The first problem is analyzed by PDE methods, whereas the second is studied by variational methods in the space of probability measures on trajectories.
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro
We study in this paper three aspects of Mean Field Games. The first one is the case when the dynamics of each player depend on the strategies of the other players. The second one concerns the modeling of noise in discrete space models and the formu
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr
The aim of this paper is to study first order Mean field games subject to a linear controlled dynamics on $mathbb R^{d}$. For this kind of problems, we define Nash equilibria (called Mean Field Games equilibria), as Borel probability measures on the