ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of some Mean Field Games systems to aggregation and flocking models

57   0   0.0 ( 0 )
 نشر من قبل Pierre Cardaliaguet
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For two classes of Mean Field Game systems we study the convergence of solutions as the interest rate in the cost functional becomes very large, modeling agents caring only about a very short time-horizon, and the cost of the control becomes very cheap. The limit in both cases is a single first order integro-partial differential equation for the evolution of the mass density. The first model is a 2nd order MFG system with vanishing viscosity, and the limit is an aggregation equation. The result has an interpretation for models of collective animal behaviour and of crowd dynamics. The second class of problems are 1st order MFGs of acceleration and the limit is the kinetic equation associated to the Cucker-Smale model. The first problem is analyzed by PDE methods, whereas the second is studied by variational methods in the space of probability measures on trajectories.

قيم البحث

اقرأ أيضاً

We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro of depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
We study in this paper three aspects of Mean Field Games. The first one is the case when the dynamics of each player depend on the strategies of the other players. The second one concerns the modeling of noise in discrete space models and the formu lation of the Master Equation in this case. Finally, we show how Mean Field Games reduce to agent based models when the intertemporal preference rate goes to infinity, i.e. when the anticipation of the players vanishes.
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho wever, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr aints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.
The aim of this paper is to study first order Mean field games subject to a linear controlled dynamics on $mathbb R^{d}$. For this kind of problems, we define Nash equilibria (called Mean Field Games equilibria), as Borel probability measures on the space of admissible trajectories, and mild solutions as solutions associated with such equilibria. Moreover, we prove the existence and uniqueness of mild solutions and we study their regularity: we prove Holder regularity of Mean Field Games equilibria and fractional semiconcavity for the value function of the underlying optimal control problem. Finally, we address the PDEs system associated with the Mean Field Games problem and we prove that the class of mild solutions coincides with a suitable class of weak solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا