ﻻ يوجد ملخص باللغة العربية
Comprehensive understanding of thermal transport in nanostructured materials needs large scale simulations bridging length scales dictated by different physics related to the wave versus particle nature of phonons. Yet, available computational approaches implicitly treat phonons as either just waves or as particles. In this work, using a full wave-based Non-Equilibrium Greens Function (NEGF) method, and a particle-based ray-tracing Monte Carlo (MC) approach, we investigate the qualitative differences in the wave and particle-based phonon transport at the vicinity of nanoscale features. For the simple example of a nanoporous geometry, we show that phonon transmission agrees very well for both methods with an error margin of approximately 15%, across phonon wavelengths even for features with sizes down to 3-4 nm. For cases where phonons need to squeeze in smaller regions to propagate, we find that MC underestimates the transmission of long wavelength phonons whereas wave treatment within NEGF indicates that those long wavelength phonons can propagate more easily. We also find that particle-based simulation methods are somewhat more sensitive to structural variations compared to the wave-based NEGF method. The insight extracted from comparing wave and particle methods can be used to provide a better and more complete understanding of phonon transport in nanomaterials.
Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1$times$1 $mu$m$^{2}$ ($Ltimes W$), the lattice thermal conductivities along th
A theoretical model of a single molecule coupled to many vibronic modes is presented. At low energies, transport is dominated by electron-vibron processes where transfer of an electron through the dot is accompanied by the excitation/emission of quan
We develop a quantum noise approach to study quantum transport through nanostructures. The nanostructures, such as quantum dots, are regarded as artificial atoms, subject to quasi-equilibrium fermionic reservoirs of electrons in biased leads. Noise o
We report a new approach to the thermal conductivity manipulation -- substrate coupling. Generally, the phonon scattering with substrates can decrease the thermal conductivity, as observed in recent experiments. However, we find that at certain regio
In this work, the heat vortexes in two-dimensional porous or ribbon structures are investigated based on the phonon Boltzmann transport equation (BTE) under the Callaway model. First, the separate thermal effects of normal (N) scattering and resistiv