ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling laws for the geometry of an impact-induced magma ocean

71   0   0.0 ( 0 )
 نشر من قبل Miki Nakajima
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle $theta$ ($0^{circ}, 30^{circ}, 60^{circ}$, and $90^{circ}$), total mass $M_T$ ($1M_{rm Mars}-53M_{rm Mars}$, where $M_{rm Mars}$ is the mass of Mars), impact velocity $v_{rm imp}$ ($v_{rm esc} - 2v_{rm esc}$, where $v_{rm esc}$ is the mutual escape velocity), and impactor-to-total mass ratio $gamma$ ($0.03-0.5$). We find that the equilibrium pressure at the base of a melt pool can be higher (up to $approx 80 %$) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub ($href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}$).



قيم البحث

اقرأ أيضاً

232 - S. Takizawa , H. Katsuragi 2019
Although a large number of astronomical craters are actually produced by the oblique impacts onto inclined surfaces, most of the laboratory experiments mimicking the impact cratering have been performed by the vertical impact onto a horizontal target surface. In previous studies on the effects of oblique impact and inclined terrain, only one of the impact angle $varphi$ or target inclination angle $theta$ has been varied in the experiments. Therefore, we perform impact-cratering experiments by systematically varying both $varphi$ and $theta$. A solid projectile of diameter $D_{rm i}=6$~mm is impacted onto a sand surface with the range of impact velocity $v_{rm i}=7$--$97$~m~s$^{-1}$. From the experimental result, we develop scaling laws for the crater dimensions on the basis of $Pi$-group scaling. As a result, the crater dimensions such as cavity volume, diameter, aspect ratio, and depth-diameter ratio can be scaled by the factors $sin varphi$ and $cos theta$ as well as the usual impact parameters ($v_{rm i}$, $D_{rm i}$, density of projectile, and surface gravity). Finally, we consider the possible application of the obtained scaling laws to the estimate of impact conditions (e.g., impact speed and impact angle) in natural crater records.
Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of wt% of water, even though the host stars activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. In order to understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma ocean evolution model, validated against the rocky Super-Earth GJ 1132b and early Earth. We simulate the coupled magma ocean-atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.
126 - Gergo Pal , Gabor Domokos , 2021
Impact induced attrition processes are, beyond being essential models of industrial ore processing, broadly regarded as the key to decipher the provenance of sedimentary particles. A detailed understanding of single impact phenomena of solid bodies h as been obtained in physics and engineering, however, the description of gradual mass reduction and shape evolution in impact sequences relies on approximate mathematical models of mean field type, formulated as curvature-driven partial differential equations. Here we establish the first link between microscopic, particle-based material models and the mean field theory for these processes. Based on realistic computer simulations of particle-wall collision sequences, we first identify the well-known damage and fragmentation energy phases, then we show that the former is split into the abrasion phase with infinite sample lifetime, analogous to Sternbergs Law, at finite asymptotic mass and the cleavage phase with finite sample lifetime, decreasing as a power law of the impact velocity, analogous to Basquins Law. We demonstrate that only in the abrasion phase does shape evolution emerging in microscopic material models reproduce with startling accuracy the spatio-temporal patterns predicted by macroscopic mean field approaches. Our results substantially extend the phase diagram of impact phenomena and set the boundaries of the applicability of geometric mean field theories for geological shape evolution. Additionally, the scaling laws obtained can be exploited for quantitative predictions of evolution histories.
The magma ocean (MO) is a crucial stage in the build-up of terrestrial planets. Its solidification and the accompanying outgassing of volatiles set the conditions for important processes occurring later or even simultaneously, such as solid-state man tle convection and atmospheric escape. To constrain the duration of a global-scale Earth MO we have built and applied a 1D interior model coupled alternatively with a grey H2O/CO2 atmosphere or with a pure H2O atmosphere treated with a line-by-line model described in a companion paper by Katyal et al. (2019). We study in detail the effects of several factors affecting the MO lifetime, such as the initial abundance of H2O and CO2, the convection regime, the viscosity, the mantle melting temperature, and the longwave radiation absorption from the atmosphere. In this specifically multi-variable system we assess the impact of each factor with respect to a reference setting commonly assumed in the literature. We find that the MO stage can last from a few thousand to several million years. By coupling the interior model with the line-by-line atmosphere model, we identify the conditions that determine whether the planet experiences a transient magma ocean or it ceases to cool and maintains a continuous magma ocean. We find a dependence of this distinction simultaneously on the mass of the outgassed H2O atmosphere and on the MO surface melting temperature. We discuss their combined impact on the MOs lifetime in addition to the known dependence on albedo, orbital distance and stellar luminosity and we note observational degeneracies that arise thereby for target exoplanets.
166 - Tim Lichtenberg 2021
Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub-Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of atmosphere-stripped exoplanets may thus constrain magma ocean dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا