ﻻ يوجد ملخص باللغة العربية
Microwave Kinetic Inductance detectors (MKIDs) have been recognized as a powerful new tool for single photon detection. These highly multiplexed superconducting devices give timing and energy measurement for every detected photon. However, the full potential of MKID single photon spectroscopy has not been reached , the achieved energy resolution is lower than expected from first principles. Here, we study the efficiency in the phonon downconversion process following the absorption of energetic photons in MKIDs. Assuming previously published material properties, we measure an average downconversion efficiency for three TiN resonators is $eta$=0.14. We discuss how this efficiency can impact the intrinsic energy resolution of MKID, and how any uncertainty in the unknown density of electron states at the Fermi energy directly affects the efficiency estimations.
We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-ante
We present a compact current sensor based on a superconducting microwave lumped-element resonator with a nanowire kinetic inductor, operating at 4.2 K. The sensor is suitable for multiplexed readout in GHz range of large-format arrays of cryogenic de
Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave i
Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $sim$200 keV due to the saturation effects. This has limited their s
We demonstrate photon counting at 1550 nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature Tc ~ 1.4 K. The detectors have a lumped-element design with a la