ﻻ يوجد ملخص باللغة العربية
Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{betabeta}simeq$ 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 $sigma/mu$ is as low as (0.80$pm$0.02) % in its one-ton fiducial mass, and for single-site interactions at $Q_{betabeta}$. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
POLAR is a compact wide-field space-borne detector for precise measurements of the linear polarisation of hard X-rays emitted by transient sources in the energy range from 50 keV to 500 keV. It consists of a 40$times$40 array of plastic scintillator
Detectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by mea
Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range b
DarkSide-50 has demonstrated the high potential of dual-phase liquid argon time projection chambers in exploring interactions of WIMPs in the GeV/c$^2$ mass range. The technique, based on the detection of the ionization signal amplified via electrolu
Microwave Kinetic Inductance detectors (MKIDs) have been recognized as a powerful new tool for single photon detection. These highly multiplexed superconducting devices give timing and energy measurement for every detected photon. However, the full p