ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Observed Diversity of Star Formation Efficiencies in Giant Molecular Clouds

97   0   0.0 ( 0 )
 نشر من قبل Kearn Grisdale
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations find a median star formation efficiency per free-fall time in Milky Way Giant Molecular Clouds (GMCs) on the order of $epsilon_{rm ff}sim 1%$ with dispersions of $sim0.5,{rm dex}$. The origin of this scatter in $epsilon_{rm ff}$ is still debated and difficult to reproduce with analytical models. We track the formation, evolution and destruction of GMCs in a hydrodynamical simulation of a Milky Way-like galaxy and by deriving cloud properties in an observationally motivated way, measure the distribution of star formation efficiencies which are in excellent agreement with observations. We find no significant link between $epsilon_{rm ff}$ and any measured global property of GMCs (e.g. gas mass, velocity dispersion). Instead, a wide range of efficiencies exist in the entire parameter space. From the cloud evolutionary tracks, we find that each cloud follow a emph{unique} evolutionary path which gives rise to wide diversity in all properties. We argue that it is this diversity in cloud properties, above all else, that results in the dispersion of $epsilon_{rm ff}$.



قيم البحث

اقرأ أيضاً

We present ALMA CO(1-0) observations toward the dust lane of the nearest elliptical and radio galaxy, NGC 5128 (Centaurus A), with high angular resolution ($sim$ 1 arcsec, or 18 pc), including information from large to small spatial scales and total flux. We find a total molecular gas mass of 1.6$times$10$^9$ $M_odot$ and we reveal the presence of filamentary components more extended than previously seen, up to a radius of 4 kpc. We find that the global star formation rate is $sim$1 Msol yr$^{-1}$, which yields a star formation efficiency (SFE) of 0.6 Gyr$^{-1}$ (depletion time $tau =$1.5 Gyr), similar to those in disk galaxies. We show the most detailed view to date (40,pc resolution) of the relation between molecular gas and star formation within the stellar component of an elliptical galaxy, from several kpc scale to the circumnuclear region close to the powerful radio jet. Although on average the SFEs are similar to those of spiral galaxies, the circumnuclear disk (CND) presents SFEs of 0.3 Gyr$^{-1}$, lower by a factor of 4 than the outer disk. The low SFE in the CND is in contrast to the high SFEs found in the literature for the circumnuclear regions of some nearby disk galaxies with nuclear activity, probably as a result of larger shear motions and longer AGN feedback. The higher SFEs in the outer disk suggests that only central molecular gas or filaments with sufficient density and strong shear motions will remain in $sim$1 Gyr, which will later result in the compact molecular distributions and low SFEs usually seen in other giant ellipticals with cold gas.
The star formation in molecular clouds is inefficient. The ionizing EUV radiation ($h u geq 13.6$ eV) from young clusters has been considered as a primary feedback effect to limit the star formation efficiency (SFE). We here focus on effects of the stellar FUV radiation (6 eV $leq h u leq$ 13.6 eV) during the cloud disruption stage. The FUV radiation may further reduce the SFE via photoelectric heating, and it also affects the chemical states of the gas that is not converted to stars (cloud remnants) via photodissociation of molecules. We have developed a one-dimensional semi-analytic model which follows the evolution of both the thermal and chemical structure of a photodissociation region (PDR) during the dynamical expansion of an HII region. We investigate how the FUV feedback limits the SFE, supposing that the star formation is quenched in the PDR where the temperature is above a threshold value (e.g., 100K). Our model predicts that the FUV feedback contributes to reduce the SFEs for the massive ($M_{rm cl} gtrsim 10^5 M_{odot}$) clouds with the low surface densities ($Sigma_{rm cl} lesssim 100$ M$_{odot}$pc$^{-2}$). Moreover, we show that a large part of the H$_2$ molecular gas contained in the cloud remnants should be CO-dark under the FUV feedback for a wide range of cloud properties. Therefore, the dispersed molecular clouds are potential factories of the CO-dark gas, which returns into the cycle of the interstellar medium.
Young massive star clusters (YMCs, with M $geq$10$^4$ M$_{odot}$) are proposed modern-day analogues of the globular clusters (GCs) that were products of extreme star formation in the early universe. The exact conditions and mechanisms under which YMC s form remain unknown -- a fact further complicated by the extreme radiation fields produced by their numerous massive young stars. Here we show that GC-sized clusters are naturally produced in radiation-hydrodynamic simulations of isolated 10$^7$ M$_{odot}$ Giant Molecular Clouds (GMCs) with properties typical of the local universe, even under the influence of radiative feedback. In all cases, these massive clusters grow to GC-level masses within 5 Myr via a roughly equal combination of filamentary gas accretion and mergers with several less massive clusters. Lowering the heavy-element abundance of the GMC by a factor of 10 reduces the opacity of the gas to radiation and better represents the high-redshift formation conditions of GCs. This results in higher gas accretion leading to a mass increase of the largest cluster by a factor of ~4. When combined with simulations of less massive GMCs (10$^{4-6}$ M$_{odot}$), a clear relation emerges between the maximum YMC mass and the mass of the host GMC. Our results demonstrate that YMCs, and potentially GCs, are a simple extension of local cluster formation to more massive clouds and do not require suggested exotic formation scenarios.
We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.
121 - D. Espada , S. Komugi , E. Muller 2012
The properties of tidally induced arms provide a means to study molecular cloud formation and the subsequent star formation under environmental conditions which in principle are different from quasi stationary spiral arms. We report the properties of a newly discovered molecular gas arm of likely tidal origin at the south of NGC 4039 and the overlap region in the Antennae galaxies, with a resolution of 168 x 085, using the Atacama Large Millimeter/submillimeter Array science verification CO(2-1) data. The arm extends 3.4 kpc (34) and is characterized by widths of ~ 200 pc (2) and velocity widths of typically DeltaV ~ 10-20 km/s . About 10 clumps are strung out along this structure, most of them unresolved, with average surface densities of Sigma_gas ~ 10-100 Msun pc^{-2}, and masses of (1-8) x 10^6 Msun. These structures resemble the morphology of beads on a string, with an almost equidistant separation between the beads of about 350 pc, which may represent a characteristic separation scale for giant molecular associations. We find that the star formation efficiency at a resolution of 6 (600 pc) is in general a factor of 10 higher than in disk galaxies and other tidal arms and bridges. This arm is linked, based on the distribution and kinematics, to the base of the western spiral arm of NGC 4039, but its morphology is different to that predicted by high-resolution simulations of the Antennae galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا