ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable cavity-enhanced terahertz frequency-domain optical Hall effect

155   0   0.0 ( 0 )
 نشر من قبل Sean Knight
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presented here is the development and demonstration of a tunable cavity-enhanced terahertz frequency-domain optical Hall effect technique. The cavity consists of at least one fixed and one tunable Fabry-Perot resonator. The approach is suitable for enhancement of the optical signatures produced by the optical Hall effect in semi-transparent conductive layer structures with plane parallel interfaces. The physical principle is the constructive interference of electric field components that undergo multiple optical Hall effect induced polarization rotations upon multiple light passages through the conductive layer stack. Tuning one of the cavity parameters, such as the external cavity thickness, permits shifting of the frequencies of the constructive interference, and enhancement of the optical signatures produced by the optical Hall effect can be obtained over large spectral regions. A cavity-tuning optical stage and gas flow cell are used as examples of instruments that exploit tuning an external cavity to enhance polarization changes in a reflected terahertz beam. Permanent magnets are used to provide the necessary external magnetic field. Conveniently, the highly reflective surface of a permanent magnet can be used to create the tunable external cavity. The signal enhancement allows the extraction of the free charge carrier properties of thin films, and can eliminate the need for expensive super-conducting magnets. Furthermore, the thickness of the external cavity establishes an additional independent measurement condition, similar to, for example, the magnetic field strength, terahertz frequency, and angle of incidence. A high electron mobility transistor structure and epitaxial graphene are studied as examples. We discuss the theoretical background, instrument design, data acquisition, and data analysis procedures.

قيم البحث

اقرأ أيضاً

The optical spin Hall effect (OSHE) is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, that leads to the formation of spin textures. In the semiconductor cavity, the physi cal basis of the spin orbit coupling is an effective magnetic field caused by the splitting of transverse-electric and transverse-magnetic (TE-TM) modes. The spin textures can be observed in the near field (local spin distribution of polaritons), and as light polarization patterns in the more readily observable far field. For future applications in spinoptronic devices, a simple and robust control mechanism, which establishes a one-to-one correspondence between stationary incident light intensity and far-field polarization pattern, is needed. We present such a control scheme, which is made possible by a specific double-microcavity design.
117 - F. P. Mezzapesa 2020
The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra and with a full compensation of the group velocity dispersion, at Terahertz (THz) frequencies, is a fundamental need for devising monolithic and miniaturized optical f requency-comb-synthesizers (FCS) in the far-infrared. In a THz QCL four-wave mixing, driven by the intrinsic third-order susceptibility of the intersubband gain medium, self-lock the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (~ 20% of the laser operational range). Here, we engineer miniaturized THz FCSs comprising a heterogeneous THz QCL integrated with a tightly-coupled on-chip solution-processed graphene saturable-absorber reflector that preserves phase-coherence between lasing modes even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes to be demonstrated, over more than 55% of the laser operational range. Furthermore, stable injection-locking is showed, paving the way to impact a number of key applications, including high-precision tuneable broadband-spectroscopy and quantum-metrology.
Coherent perfect absorber (CPA) was proposed as the time-reversed counterpart to laser: a resonator containing lossy medium instead of gain medium can absorb the coherent optical fields completely. Here, we exploit a monolayer graphene to realize the CPA in a non-resonant manner. It is found that quasi-CPA point exists in the terahertz regime for suspending monolayer graphene, and the CPA can be implemented with the assistant of proper phase modulation among two incident beams at the quasi-CPA frequencies. The graphene based CPA is found of broadband angular selectivity: CPA point splits into two frequency bands for the orthogonal $s$ and $p$ polarizations at oblique incidence, and the two bands cover a wide frequency range starting from zero frequency. Furthermore, the coherent absorption can be tuned substantially by varying the gate-controlled Fermi energy. The findings of CPA with non-resonant graphene sheet can be generalized for potential applications in terahertz/infrared detections and signal processing with two-dimensional optoelectronic materials.
We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to t he molecular line width, {Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.
We propose an optical counterpart of the quantum spin Hall (QSH) effect in a two-dimensional photonic crystal composed of a gyrotropic medium exhibiting both gyroelectric and gyromagnetic properties simultaneously. Such QSH effect shows unidirectiona l polarization-dependent transportation of photonic topological edged states, which is robust against certain disorders and impurities. More importantly, we find that such unique property is not protected by conventional time-reversal symmetry of photons obeying the Bosonic statistics but rather by the same symmetry, as electrons time-reversal symmetry. Based on the tight-binding approximation approach, we construct an effective Hamiltonian for this photonic structure, which is shown to have a similar form to that of an electronic QSH system. Furthermore, the invariant of such model is calculated in order to unify its topological non-trivial character. Our finding provides a viable way to exploit the optical topological property, and also can be leveraged to develop a photonic platform to mimic the spin properties of electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا