ﻻ يوجد ملخص باللغة العربية
We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to the molecular line width, {Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.
Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and info
Kerr optical frequency combs generated in a coherently driven Kerr nonlinear resonator has the potential for a wide range of applications. However, in a single cavity which is a widely adopted configuration for Kerr optical frequency combs generation
We demonstrate a method for accurately locking the frequency of a continuous-wave laser to an optical frequency comb in conditions where the signal-to-noise ratio is low, too low to accommodate other methods. Our method is typically orders of magnitu
Presented here is the development and demonstration of a tunable cavity-enhanced terahertz frequency-domain optical Hall effect technique. The cavity consists of at least one fixed and one tunable Fabry-Perot resonator. The approach is suitable for e
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadb