ﻻ يوجد ملخص باللغة العربية
Using a magneto-optical pump-probe technique with micrometer spatial resolution we show that magnetization precession can be launched in individual magnetic domains imprinted in a Co$_{40}$Fe$_{40}$B$_{20}$ (CoFeB) layer by elastic coupling to ferroelectric domains in a BaTiO$_{3}$ substrate. The dependence of the precession parameters on external magnetic field strength and orientation reveal that by laser-induced ultrafast partial quenching of the magnetoelastic coupling parameter of CoFeB by $approx$27% along with 10% ultrafast demagnetization trigger the magnetization precession. The relation between the laser-induced reduction of the magnetoelastic coupling and the demagnetization is approximated by the $n(n+1)/2$-law with n$approx$2. This correspondence confirms the thermal origin of the laser-induced anisotropy change. Based on the analysis and modeling of the excited precession we find signatures of laser-induced precessional switching, which occurs when the magnetic field is applied along the hard magnetization axis and its value is close to the effective magnetoelastic anisotropy field. The precession excitation process in an individual magnetoelastic domain is found to be unaffected by neighboring domains. This makes laser-induced changes of magnetoelastic anisotropy a promising tool for driving magnetization dynamics and switching in composite multiferroics with spatial selectivity.
We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr
The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magn
We report dynamics of the transient polar Kerr rotation (KR) and of the transient reflectivity induced by femtosecond laser pulses in ferromagnetic (Ga,Mn)As with no external magnetic field applied. It is shown that the measured KR signal consist of
Cylindrical BaTiO3 nanorods embedded in (100)-oriented SrTiO3 epitaxial film in a brush-like configuration are investigated in the framework of the Ginzburg-Landau-Devonshire model. It is shown that strain compatibility at BaTiO3/SrTiO3 interfaces ke
Non-thermal laser induced spin excitations, recently discovered in conventional oxide and metal ferromagnets, open unprecedented opportunities for research and applications of ultrafast optical manipulation of magnetic systems. Ferromagnetic semicond