ﻻ يوجد ملخص باللغة العربية
Every $L$-space knot is fibered and strongly quasi-positive, but this does not hold for $L$-space links. In this paper, we use the so called H-function, which is a concordance link invariant, to introduce a subfamily of fibered strongly quasi-positive $L$-space links. Furthermore, we present an infinite family of $L$-space links which are not quasi-positive.
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac
We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagr
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsvath, Stipsicz, and Szabos Upsilon invarian
For a positive braid link, a link represented as a closed positive braids, we determine the first few coefficients of its HOMFLY polynomial in terms of geometric invariants such as, the maximum euler characteristics, the number of split factors, and
We prove that instanton L-space knots are fibered and strongly quasipositive. Our proof differs conceptually from proofs of the analogous result in Heegaard Floer homology, and includes a new decomposition theorem for cobordism maps in framed instant