ترغب بنشر مسار تعليمي؟ اضغط هنا

Fibered and strongly quasi-positive $L$-space links

113   0   0.0 ( 0 )
 نشر من قبل Alberto Cavallo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Every $L$-space knot is fibered and strongly quasi-positive, but this does not hold for $L$-space links. In this paper, we use the so called H-function, which is a concordance link invariant, to introduce a subfamily of fibered strongly quasi-positive $L$-space links. Furthermore, we present an infinite family of $L$-space links which are not quasi-positive.

قيم البحث

اقرأ أيضاً

We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac hinery and can thus be translated to other forms of Floer homology. We carried this out for instanton Floer homology in our recent article Instantons and L-space surgeries, and used it to generalize Kronheimer and Mrowkas results on $SU(2)$ representations of fundamental groups of Dehn surgeries.
We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagr ams with quasipositive canonical surface (the surface produced by Seiferts algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality.
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsvath, Stipsicz, and Szabos Upsilon invarian t, allows us to determine the exact cobordism distance between torus knots with braid index two and six.
63 - Tetsuya Ito 2020
For a positive braid link, a link represented as a closed positive braids, we determine the first few coefficients of its HOMFLY polynomial in terms of geometric invariants such as, the maximum euler characteristics, the number of split factors, and the number of prime factors. Our results give improvements of known results for Conway and Jones polynomial of positive braid links. In Appendix, we present a simpler proof of theorem of Cromwell, a positive braid diagram represent composite link if and only if the the diagram is composite.
We prove that instanton L-space knots are fibered and strongly quasipositive. Our proof differs conceptually from proofs of the analogous result in Heegaard Floer homology, and includes a new decomposition theorem for cobordism maps in framed instant on Floer homology akin to the $textrm{Spin}^c$ decompositions of cobordism maps in other Floer homology theories. As our main application, we prove (modulo a mild nondegeneracy condition) that for $r$ a positive rational number and $K$ a nontrivial knot in the $3$-sphere, there exists an irreducible homomorphism [pi_1(S^3_r(K)) to SU(2)] unless $r geq 2g(K)-1$ and $K$ is both fibered and strongly quasipositive, broadly generalizing results of Kronheimer and Mrowka. We also answer a question of theirs from 2004, proving that there is always an irreducible homomorphism from the fundamental group of 4-surgery on a nontrivial knot to $SU(2)$. In another application, we show that a slight enhancement of the A-polynomial detects infinitely many torus knots, including the trefoil.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا