ﻻ يوجد ملخص باللغة العربية
We prove that instanton L-space knots are fibered and strongly quasipositive. Our proof differs conceptually from proofs of the analogous result in Heegaard Floer homology, and includes a new decomposition theorem for cobordism maps in framed instanton Floer homology akin to the $textrm{Spin}^c$ decompositions of cobordism maps in other Floer homology theories. As our main application, we prove (modulo a mild nondegeneracy condition) that for $r$ a positive rational number and $K$ a nontrivial knot in the $3$-sphere, there exists an irreducible homomorphism [pi_1(S^3_r(K)) to SU(2)] unless $r geq 2g(K)-1$ and $K$ is both fibered and strongly quasipositive, broadly generalizing results of Kronheimer and Mrowka. We also answer a question of theirs from 2004, proving that there is always an irreducible homomorphism from the fundamental group of 4-surgery on a nontrivial knot to $SU(2)$. In another application, we show that a slight enhancement of the A-polynomial detects infinitely many torus knots, including the trefoil.
We study irreducible ${rm SL}_2$-representations of twist knots. We first determine all non-acyclic ${rm SL}_2(mathbb{C})$-representations, which turn out to lie on a line denoted as $x=y$ in $mathbb{R}^2$. Our main tools are character variety, Reide
Much work has been done recently towards trying to understand the topological significance of being an L-space. Building on work of Rasmussen and Rasmussen, we give a topological characterisation of Floer simple manifolds such that all non-longitudin
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac
Every $L$-space knot is fibered and strongly quasi-positive, but this does not hold for $L$-space links. In this paper, we use the so called H-function, which is a concordance link invariant, to introduce a subfamily of fibered strongly quasi-positiv
A surgery on a knot in 3-sphere is called SU(2)-cyclic if it gives a manifold whose fundamental group has no non-cyclic SU(2) representations. Using holonomy perturbations on the Chern-Simons functional, we prove that the distance of two SU(2)-cyclic