ﻻ يوجد ملخص باللغة العربية
We theoretically propose a gigantic orbital Edelstein effect in topological insulators and interpret the results in terms of topological surface currents. We numerically calculate the orbital Edelstein effect for a model of a three-dimensional Chern insulator as an example. Furthermore, we calculate the orbital Edelstein effect as a surface quantity using a surface Hamiltonian of a topological insulator, and numerically show that it well describes the results by direct numerical calculation. We find that the orbital Edelstein effect depends on the local crystal structure of the surface, which shows that the orbital Edelstein effect cannot be defined as a bulk quantity. We propose that Chern insulators and Z_2 topological insulators can be a platform with a large orbital Edelstein effect because current flows only along the surface. We also propose candidate topological insulators for this effect. As a result, the orbital magnetization as a response to the current is much larger in topological insulators than that in metals by many orders of magnitude.
We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
We investigate the nonequilibrium spin polarization due to a temperature gradient in antiferromagnetic insulators, which is the magnonic analogue of the inverse spin-galvanic effect of electrons. We derive a linear response theory of a temperature-gr
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun
In an easy-plane antiferromagnet with the Dzyaloshinskii-Moriya interaction (DMI), magnons are subject to an effective spin-momentum locking. An in-plane temperature gradient can generate interfacial accumulation of magnons with a specified polarizat