ﻻ يوجد ملخص باللغة العربية
We study a model of isothermal steady-state work-to-work converter, where a single quantum two-level system (TLS) driven by time-dependent periodic external fields acts as the working medium and is permanently put in contact with a thermal reservoir at fixed temperature $T$. By combining Short-Iterative Lanczos (SIL) method and analytic approaches, we study the converter performance in the linear response regime and in a wide range of driving frequencies, from weak to strong dissipation. We show that for our ideal quantum machine several parameter ranges exist where a violation of Thermodynamics Uncertainty Relations (TUR) occurs. We find the violation to depend on the driving frequency and on the dissipation strength, and we trace it back to the degree of coherence of the quantum converter. We eventually discuss the influence of other possible sources of violation, such as non-Markovian effects during the converter dynamics.
Theoretical treatments of periodically-driven quantum thermal machines (PD-QTMs) are largely focused on the limit-cycle stage of operation characterized by a periodic state of the system. Yet, this regime is not immediately accessible for experimenta
In apparent contradiction to the laws of thermodynamics, Maxwells demon is able to cyclically extract work from a system in contact with a thermal bath exploiting the information about its microstate. The resolution of this paradox required the insig
Research on the out-of-equilibrium dynamics of quantum systems has so far produced important statements on the thermodynamics of small systems undergoing quantum mechanical evolutions. Key examples are provided by the Crooks and Jarzynski relations:
We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increase
Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equi