ﻻ يوجد ملخص باللغة العربية
In apparent contradiction to the laws of thermodynamics, Maxwells demon is able to cyclically extract work from a system in contact with a thermal bath exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent both in the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demons memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.
The Second Law of Thermodynamics states that the entropy of a closed system is non-decreasing. Discussing the Second Law in the quantum world poses new challenges and provides new opportunities, involving fundamental quantum-information-theoretic que
The information of a quantum system acquired by a Maxwell demon can be used for either work extraction or entanglement preparation. We study these two tasks by using a thermal qubit, in which a demon obtains her information from measurements on the e
Maxwells demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this intelligent observer is capable of compensating entropy production (or extracting work), apparently challenging th
Research on the out-of-equilibrium dynamics of quantum systems has so far produced important statements on the thermodynamics of small systems undergoing quantum mechanical evolutions. Key examples are provided by the Crooks and Jarzynski relations:
We study a model of isothermal steady-state work-to-work converter, where a single quantum two-level system (TLS) driven by time-dependent periodic external fields acts as the working medium and is permanently put in contact with a thermal reservoir