ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing a quantum Maxwell demon at work

154   0   0.0 ( 0 )
 نشر من قبل Benjamin Huard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In apparent contradiction to the laws of thermodynamics, Maxwells demon is able to cyclically extract work from a system in contact with a thermal bath exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent both in the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demons memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.



قيم البحث

اقرأ أيضاً

The Second Law of Thermodynamics states that the entropy of a closed system is non-decreasing. Discussing the Second Law in the quantum world poses new challenges and provides new opportunities, involving fundamental quantum-information-theoretic que stions and novel quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a non-decreasing entropy. Here, we seek the opposite, a system described by a non-unital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a micro-environment in the form of a spin that realizes this goal. Within this non-unital and energy-conserving quantum channel, the micro-environment acts with two non-commuting operations on the system in an autonomous way. We find, that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the systems entropy decreasing if the environments state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy-conservation in the non-unital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing to run this engine with no local waste heat.
192 - Gang-Gang He , Fu-Lin Zhang 2021
The information of a quantum system acquired by a Maxwell demon can be used for either work extraction or entanglement preparation. We study these two tasks by using a thermal qubit, in which a demon obtains her information from measurements on the e nvironment of the qubit. The allowed entanglement, between the qubit and an auxiliary system, is enhanced by the information. And, the increment is find to be equivalent to the extractable work. The Maxwell demon is called to be quantum by Beyer textit{et al.} [Phys. Rev. Lett 123, 250606 (2019) ] if there is quantum steering from the environment to the qubit. In this case, the postmeasured states of the qubit, after the measurements on its environment, cannot be simulated by an objective local statistical ensemble. We present a upper bound of extractable work, and equivalently of the allowed entanglement, for unsteerable demons, considering two measurements inducing two orthogonal changes of the Bloch vector of the qubit.
Maxwells demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this intelligent observer is capable of compensating entropy production (or extracting work), apparently challenging th e second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwells demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility on a non-equilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.
Research on the out-of-equilibrium dynamics of quantum systems has so far produced important statements on the thermodynamics of small systems undergoing quantum mechanical evolutions. Key examples are provided by the Crooks and Jarzynski relations: taking into account fluctuations in non-equilibrium dynamics, such relations connect equilibrium properties of thermodynamical relevance with explicit non-equilibrium features. Although the experimental verification of such fundamental relations in the classical domain has encountered some success, their quantum mechanical version requires the assessment of the statistics of work performed by or onto an evolving quantum system, a step that has so far encountered considerable difficulties in its implementation due to the practical difficulty to perform reliable projective measurements of instantaneous energy states. In this paper, by exploiting a radical change in the characterization of the work distribution at the quantum level, we report the first experimental verification of the quantum Jarzynski identity and the Tasaki-Crooks relation following a quantum process implemented in a Nuclear Magnetic Resonance (NMR) system. Our experimental approach has enabled the full characterisation of the out-of-equilibrium dynamics of a quantum spin in a statistically significant way, thus embodying a key step towards the grounding of quantum-systems thermodynamics.
We study a model of isothermal steady-state work-to-work converter, where a single quantum two-level system (TLS) driven by time-dependent periodic external fields acts as the working medium and is permanently put in contact with a thermal reservoir at fixed temperature $T$. By combining Short-Iterative Lanczos (SIL) method and analytic approaches, we study the converter performance in the linear response regime and in a wide range of driving frequencies, from weak to strong dissipation. We show that for our ideal quantum machine several parameter ranges exist where a violation of Thermodynamics Uncertainty Relations (TUR) occurs. We find the violation to depend on the driving frequency and on the dissipation strength, and we trace it back to the degree of coherence of the quantum converter. We eventually discuss the influence of other possible sources of violation, such as non-Markovian effects during the converter dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا