ترغب بنشر مسار تعليمي؟ اضغط هنا

Answering Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders

66   0   0.0 ( 0 )
 نشر من قبل Bhushan Kotnis
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Representation learning for knowledge graphs (KGs) has focused on the problem of answering simple link prediction queries. In this work we address the more ambitious challenge of predicting the answers of conjunctive queries with multiple missing entities. We propose Bi-Directional Query Embedding (BIQE), a method that embeds conjunctive queries with models based on bi-directional attention mechanisms. Contrary to prior work, bidirectional self-attention can capture interactions among all the elements of a query graph. We introduce a new dataset for predicting the answer of conjunctive query and conduct experiments that show BIQE significantly outperforming state of the art baselines.



قيم البحث

اقرأ أيضاً

Healthcare question answering assistance aims to provide customer healthcare information, which widely appears in both Web and mobile Internet. The questions usually require the assistance to have proficient healthcare background knowledge as well as the reasoning ability on the knowledge. Recently a challenge involving complex healthcare reasoning, HeadQA dataset, has been proposed, which contains multiple-choice questions authorized for the public healthcare specialization exam. Unlike most other QA tasks that focus on linguistic understanding, HeadQA requires deeper reasoning involving not only knowledge extraction, but also complex reasoning with healthcare knowledge. These questions are the most challenging for current QA systems, and the current performance of the state-of-the-art method is slightly better than a random guess. In order to solve this challenging task, we present a Multi-step reasoning with Knowledge extraction framework (MurKe). The proposed framework first extracts the healthcare knowledge as supporting documents from the large corpus. In order to find the reasoning chain and choose the correct answer, MurKe iterates between selecting the supporting documents, reformulating the query representation using the supporting documents and getting entailment score for each choice using the entailment model. The reformulation module leverages selected documents for missing evidence, which maintains interpretability. Moreover, we are striving to make full use of off-the-shelf pre-trained models. With less trainable weight, the pre-trained model can easily adapt to healthcare tasks with limited training samples. From the experimental results and ablation study, our system is able to outperform several strong baselines on the HeadQA dataset.
In the question answering(QA) task, multi-hop reasoning framework has been extensively studied in recent years to perform more efficient and interpretable answer reasoning on the Knowledge Graph(KG). However, multi-hop reasoning is inapplicable for a nswering n-ary fact questions due to its linear reasoning nature. We discover that there are two feasible improvements: 1) upgrade the basic reasoning unit from entity or relation to fact; and 2) upgrade the reasoning structure from chain to tree. Based on these, we propose a novel fact-tree reasoning framework, through transforming the question into a fact tree and performing iterative fact reasoning on it to predict the correct answer. Through a comprehensive evaluation on the n-ary fact KGQA dataset introduced by this work, we demonstrate that the proposed fact-tree reasoning framework has the desired advantage of high answer prediction accuracy. In addition, we also evaluate the fact-tree reasoning framework on two binary KGQA datasets and show that our approach also has a strong reasoning ability compared with several excellent baselines. This work has direct implications for exploring complex reasoning scenarios and provides a preliminary baseline approach.
Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) ma y yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines.
The complexity of the visual world creates significant challenges for comprehensive visual understanding. In spite of recent successes in visual recognition, todays vision systems would still struggle to deal with visual queries that require a deeper reasoning. We propose a knowledge base (KB) framework to handle an assortment of visual queries, without the need to train new classifiers for new tasks. Building such a large-scale multimodal KB presents a major challenge of scalability. We cast a large-scale MRF into a KB representation, incorporating visual, textual and structured data, as well as their diverse relations. We introduce a scalable knowledge base construction system that is capable of building a KB with half billion variables and millions of parameters in a few hours. Our system achieves competitive results compared to purpose-built models on standard recognition and retrieval tasks, while exhibiting greater flexibility in answering richer visual queries.
Answering questions on scholarly knowledge comprising text and other artifacts is a vital part of any research life cycle. Querying scholarly knowledge and retrieving suitable answers is currently hardly possible due to the following primary reason: machine inactionable, ambiguous and unstructured content in publications. We present JarvisQA, a BERT based system to answer questions on tabular views of scholarly knowledge graphs. Such tables can be found in a variety of shapes in the scholarly literature (e.g., surveys, comparisons or results). Our system can retrieve direct answers to a variety of different questions asked on tabular data in articles. Furthermore, we present a preliminary dataset of related tables and a corresponding set of natural language questions. This dataset is used as a benchmark for our system and can be reused by others. Additionally, JarvisQA is evaluated on two datasets against other baselines and shows an improvement of two to three folds in performance compared to related methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا