ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving quantum trajectories for systems with linear Heisenberg-picture dynamics and Gaussian measurement noise

43   0   0.0 ( 0 )
 نشر من قبل Prahlad Warszawski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study solutions to the quantum trajectory evolution of $N$-mode open quantum systems possessing a time-independent Hamiltonian, linear Heisenberg-picture dynamics, and Gaussian measurement noise. In terms of the mode annihilation and creation operators, a system will have linear Heisenberg-picture dynamics under two conditions. First, the Hamiltonian must be quadratic. Second, the Lindblad operators describing the coupling to the environment (including those corresponding to the measurement) must be linear. In cases where we can solve the $2N$-degree polynomials that arise in our calculations, we provide an analytical solution for initial states that are arbitrary (i.e. they are not required to have Gaussian Wigner functions). The solution takes the form of an evolution operator, with the measurement-result dependence captured in $2N$ stochastic integrals over these classical random signals. The solutions also allow the POVM, which generates the probabilities of obtaining measurement outcomes, to be determined. To illustrate our results, we solve some single-mode example systems, with the POVMs being of practical relevance to the inference of an initial state, via quantum state tomography. Our key tool is the representation of mixed states of quantum mechanical oscillators as state vectors rather than state matrices (albeit in a larger Hilbert space). Together with methods from Lie algebra, this allows a more straightforward manipulation of the exponential operators comprising the system evolution than is possible in the original Hilbert space.



قيم البحث

اقرأ أيضاً

We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a dat a structure for $x$ allowing sampling and querying to the entries, where $x$ is such that $|x - A^{-1}b|leq epsilon |A^{-1}b|$. This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is $widetilde{O}(kappa_F^6 kappa^2/epsilon^2 )$, where $kappa_F = |A|_F|A^{-1}|$ and $kappa = |A||A^{-1}|$. This improves the previous best algorithm [Gily{e}n, Song and Tang, arXiv:2009.07268] of complexity $widetilde{O}(kappa_F^6 kappa^6/epsilon^4)$. Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when $A$ is row sparse, this method already returns an approximate solution $x$ in time $widetilde{O}(kappa_F^2)$, while the best quantum algorithm known returns $ket{x}$ in time $widetilde{O}(kappa_F)$ when $A$ is stored in the QRAM data structure. As a result, assuming access to QRAM and if $A$ is row sparse, the speedup based on current quantum algorithms is quadratic.
Recently, it is shown that quantum computers can be used for obtaining certain information about the solution of a linear system Ax=b exponentially faster than what is possible with classical computation. Here we first review some key aspects of the algorithm from the standpoint of finding its efficient quantum circuit implementation using only elementary quantum operations, which is important for determining the potential usefulness of the algorithm in practical settings. Then we present a small-scale quantum circuit that solves a 2x2 linear system. The quantum circuit uses only 4 qubits, implying a tempting possibility for experimental realization. Furthermore, the circuit is numerically simulated and its performance under different circuit parameter settings is demonstrated.
We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state diffusion equations for open quantum systems coupled to an environment up to arbitrary orders of noises or coupling strengths. As an important appl ication, we consider a real-time simulation of a spin-boson model in a strong coupling regime that is difficult to deal with using conventional methods. We show that the non-Markovian stochastic Schr{o}dinger equation can be efficiently implemented as a real--time simulation for this model, so as to give an accurate description of spin-boson dynamics beyond the rotating-wave approximation.
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time $tau$, conditioned on an entire observed measurement record (both before and after $tau$). However, this smoothing technique requir es an observer (Alice, say) to know the nature of the measurement records that are unknown to her in order to characterize the possible true states for Bobs (say) systems. If Alice makes an incorrect assumption about the set of true states for Bobs system, she will obtain a smoothed state that is suboptimal, and, worse, may be unrealizable (not corresponding to a valid evolution for the true states) or even unphysical (not represented by a state matrix $rhogeq0$). In this paper, we review the historical background to quantum state smoothing, and list general criteria a smoothed quantum state should satisfy. Then we derive, for the case of linear Gaussian quantum systems, a necessary and sufficient constraint for realizability on the covariance matrix of the true state. Naturally, a realizable covariance of the true state guarantees a smoothed state which is physical. It might be thought that any putative true covariance which gives a physical smoothed state would be a realizable true covariance, but we show explicitly that this is not so. This underlines the importance of the realizabilty constraint.
279 - Jian Pan , Yudong Cao , Xiwei Yao 2013
Quantum computers have the potential of solving certain problems exponentially faster than classical computers. Recently, Harrow, Hassidim and Lloyd proposed a quantum algorithm for solving linear systems of equations: given an $Ntimes{N}$ matrix $A$ and a vector $vec b$, find the vector $vec x$ that satisfies $Avec x = vec b$. It has been shown that using the algorithm one could obtain the solution encoded in a quantum state $|x$ using $O(log{N})$ quantum operations, while classical algorithms require at least O(N) steps. If one is not interested in the solution $vec{x}$ itself but certain statistical feature of the solution ${x}|M|x$ ($M$ is some quantum mechanical operator), the quantum algorithm will be able to achieve exponential speedup over the best classical algorithm as $N$ grows. Here we report a proof-of-concept experimental demonstration of the quantum algorithm using a 4-qubit nuclear magnetic resonance (NMR) quantum information processor. For all the three sets of experiments with different choices of $vec b$, we obtain the solutions with over 96% fidelity. This experiment is a first implementation of the algorithm. Because solving linear systems is a common problem in nearly all fields of science and engineering, we will also discuss the implication of our results on the potential of using quantum computers for solving practical linear systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا