ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Circuit Design for Solving Linear Systems of Equations

193   0   0.0 ( 0 )
 نشر من قبل Yudong Cao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it is shown that quantum computers can be used for obtaining certain information about the solution of a linear system Ax=b exponentially faster than what is possible with classical computation. Here we first review some key aspects of the algorithm from the standpoint of finding its efficient quantum circuit implementation using only elementary quantum operations, which is important for determining the potential usefulness of the algorithm in practical settings. Then we present a small-scale quantum circuit that solves a 2x2 linear system. The quantum circuit uses only 4 qubits, implying a tempting possibility for experimental realization. Furthermore, the circuit is numerically simulated and its performance under different circuit parameter settings is demonstrated.



قيم البحث

اقرأ أيضاً

268 - Jian Pan , Yudong Cao , Xiwei Yao 2013
Quantum computers have the potential of solving certain problems exponentially faster than classical computers. Recently, Harrow, Hassidim and Lloyd proposed a quantum algorithm for solving linear systems of equations: given an $Ntimes{N}$ matrix $A$ and a vector $vec b$, find the vector $vec x$ that satisfies $Avec x = vec b$. It has been shown that using the algorithm one could obtain the solution encoded in a quantum state $|x$ using $O(log{N})$ quantum operations, while classical algorithms require at least O(N) steps. If one is not interested in the solution $vec{x}$ itself but certain statistical feature of the solution ${x}|M|x$ ($M$ is some quantum mechanical operator), the quantum algorithm will be able to achieve exponential speedup over the best classical algorithm as $N$ grows. Here we report a proof-of-concept experimental demonstration of the quantum algorithm using a 4-qubit nuclear magnetic resonance (NMR) quantum information processor. For all the three sets of experiments with different choices of $vec b$, we obtain the solutions with over 96% fidelity. This experiment is a first implementation of the algorithm. Because solving linear systems is a common problem in nearly all fields of science and engineering, we will also discuss the implication of our results on the potential of using quantum computers for solving practical linear systems.
The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the s olution of the Poisson equation on a grid with error varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a dat a structure for $x$ allowing sampling and querying to the entries, where $x$ is such that $|x - A^{-1}b|leq epsilon |A^{-1}b|$. This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is $widetilde{O}(kappa_F^6 kappa^2/epsilon^2 )$, where $kappa_F = |A|_F|A^{-1}|$ and $kappa = |A||A^{-1}|$. This improves the previous best algorithm [Gily{e}n, Song and Tang, arXiv:2009.07268] of complexity $widetilde{O}(kappa_F^6 kappa^6/epsilon^4)$. Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when $A$ is row sparse, this method already returns an approximate solution $x$ in time $widetilde{O}(kappa_F^2)$, while the best quantum algorithm known returns $ket{x}$ in time $widetilde{O}(kappa_F)$ when $A$ is stored in the QRAM data structure. As a result, assuming access to QRAM and if $A$ is row sparse, the speedup based on current quantum algorithms is quadratic.
We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an $Ntimes N$ matrix $mathcal{M}$, an $N$-dimensional vector $textbf{emph{b}}$, and an initial vector $textbf{emph{x}}(0)$, obtain a target vector $textbf{emph{x}}(t)$ as a function of time $t$ according to the constraint $dtextbf{emph{x}}(t)/dt=mathcal{M}textbf{emph{x}}(t)+textbf{emph{b}}$. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances. In addition, we demonstrate our quantum algorithm for a $4times4$ linear differential equation using a 4-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations.
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources a re not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations of the form $Ax = b$. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called Ansatz tree. The CQS approach and the Ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as $2^{300} times 2^{300}$ by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. These experiments demonstrate the algorithms ability to scale to system sizes within reach in near-term quantum devices of about $100$-$300$ qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا